Journal of Infrared and Millimeter Waves, Volume. 39, Issue 2, 137(2020)

Examination of the durability of interband cascade lasers against structural variations

Yu-Zhe LIN1,2,3, Jeremy A. MASSENGALE2,4, Wen-Xiang HUANG2,4, Rui-Qing YANG2、*, Tetsuya D. MISHIMA4, and Michael B. SANTOS4
Author Affiliations
  • 1Laboratory of Solid-State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing00083, China
  • 2School of Electrical and Computer Engineering,University of Oklahoma,Norman 73019,USA
  • 3Center of Materials Science and Optoelectronics Engineering,University of the Chinese Academy of Sciences,Beijing 100049,China
  • 4Homer L. Dodge Department of Physics and Astronomy,University of Oklahoma,Norman 73019,USA
  • show less
    References(19)

    [1] YANG R Q. Infrared laser based on intersubband transitions in quantum wells. Superlattices and Microstructures, 17, 77-83(1995).

    [2] YANG R Q. in Semiconductor lasers: Fundamentals and applications, 487-513(2013).

    [3] Vurgaftman I, Weih R, Kamp M. Interband cascade lasers. : Appl. Phys, 48, 123001(2015).

    [4] Trofimov I E, Canedy C L, Kim C S. Interband cascade lasers with long lifetimes. Appl. Optics, 54, 9441-9445(2015).

    [5] LI L, YE H, JIANG Y C. MBE-grown long-wavelength interband cascade lasers on InAs substrates. J. Crystal Growth, 425, 369-372(2015).

    [6] YANG R Q, LI L, HUANG W X. InAs-based Interband Cascade Lasers. IEEE J. Selected Topics Quantum Electronics, 25, 1200108(2019).

    [7] Koeth J, Weih R, Scheuermanna J. Infrared Remote Sensing and Instrumentation XXV, San Diego, United States, 10403, 1040308(2017).

    [8] Shterengas L, Kipshidze G, Hosoda T. Cascade Pumping of 1.9-3.3 µm Type-I Quantum Well GaSb-based Diode Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-8(2017).

    [9] Faist J, Capasso F, Sivco D L. Quantum cascade laser. Science, 264, 553-556(1994).

    [10] Jung D, Bank S R, Lee M L. Next generation mid-infrared sources. . Opt, 19, 123001(2017).

    [11] YANG R Q, PEI S S. Novel type-II quantum cascade lasers. J. Appl. Phys, 79, 8197-8203(1996).

    [12] LI L, JIANG Y, YE H. Low-threshold InAs-based interband cascade lasers operating at high temperatures. Appl. Phys. Lett, 106, 251102(2015).

    [13] Esaki L, CHANG L L, Mendez E E. 532. Phys, 20, L529(1981).

    [14] Meyer J R, Hoffman C A, Bartoli F J. Type-II quantum-well lasers for the mid-wavelength infrared. Appl. Phys. Lett, 67, 757-759(1995).

    [15] YANG R Q, LI L, Zhao L H. 8640: paper 86400Q(2013).

    [16] Canedy C L, Warren M V, Merritt C D. Quantum Sensing and Nano Electronics and Photonics XIV, San Francisco, United States, 10111, 101110G(2017).

    [17] Schade A, Höfling S. Infrared Remote Sensing and Instrumentation XXV, San Diego, United States, 10403, 1040305(2017).

    [18] [18] 18YANGR Q. Mid-infrared interband cascade lasers based on type-II heterostructures [J]. Microelectronics J., 1999, 30(10): 1043-1056;and references therein.

    [19] [19] 19YANGR Q, BradshawJ L, BrunoJ D, et al. Mid-infrared type-II interband cascade lasers [J]. IEEE J. Quantum Electron., 2002, 38(6): 559-568;and references therein.

    Tools

    Get Citation

    Copy Citation Text

    Yu-Zhe LIN, Jeremy A. MASSENGALE, Wen-Xiang HUANG, Rui-Qing YANG, Tetsuya D. MISHIMA, Michael B. SANTOS. Examination of the durability of interband cascade lasers against structural variations[J]. Journal of Infrared and Millimeter Waves, 2020, 39(2): 137

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Materials and Devices

    Received: Mar. 2, 2020

    Accepted: --

    Published Online: Apr. 29, 2020

    The Author Email: Rui-Qing YANG (Rui.q.Yang@ou.edu)

    DOI:10.11972/j.issn.1001-9014.2020.02.001

    Topics