Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415005(2025)

LiDAR-Inertial SLAM Method Fused with Semantic Information

Chuanwei Zhang and Ruiqi Zhao*
Author Affiliations
  • College of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi , China
  • show less
    Figures & Tables(15)
    Framework of the SLI-SLAM method
    Cluster analysis based on the flatness degree
    Results of point cloud segmentation and feature extraction. (a) Original point cloud; (b) ground point cloud; (c) split point cloud; (d) edge feature point; (e) plane feature point
    D3p-S network structure
    Point cloud semantic segmentation. (a) Original point cloud; (b) semantic segmentation point cloud
    Dynamic obstacle removal effect. (a) Before dynamic object removal; (b) after dynamic object removal
    Factor graph optimization
    Experimental platform
    Comparison of the semantic segmentation results. (a) (b) Original image; (c) (d) image segmentation effect of the Deeplabv3+; (e) (f) image segmentation effect of the D3p-S
    Movement trajectory and APE error distribution of the autonomous localization test. (a) (c) Campus environment;(b) (d) KITTI-00 sequence
    Environmental mapping results. (a) SLI-SLAM; (b) LeGo-LOAM; (c) LIO-SAM
    Urban road environment mapping results. (a) (b) (c) Camera image; (d) (e) (f) semantic segmentation of the images;(g) (h) (i) semantic point cloud map; (j) semantic map of the urban road environment construction
    • Table 1. Comparative experiments on the Cityscapes dataset

      View table

      Table 1. Comparative experiments on the Cityscapes dataset

      AlgorithmmIoU /%mPA /%Speed /(frame/s)
      SegNet75.6278.3412.59
      PSPNet79.4382.5913.06
      Deeplabv3+81.3484.6813.95
      Ours(D3p-S)83.6786.4316.24
    • Table 2. APE of each algorithm

      View table

      Table 2. APE of each algorithm

      AlgorithmKITTI-00CampusCity road
      MeanRMSEMeanRMSEMeanRMSE
      LeGo-LOAM4.4618.1373.2095.4328.96315.315
      LIO-SAM3.8596.6742.7044.5035.3269.139
      SLI-SLAM1.7623.9211.8962.4493.9456.367
    • Table 3. Comparison of APE

      View table

      Table 3. Comparison of APE

      ExperimentNo.SequenceImage semantic segmentation moduleMeanRMSEStd
      1Campus×2.0473.4811.658
      21.8962.4491.016
      3City road×8.06615.84510.233
      43.9456.3674.051
    Tools

    Get Citation

    Copy Citation Text

    Chuanwei Zhang, Ruiqi Zhao. LiDAR-Inertial SLAM Method Fused with Semantic Information[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Machine Vision

    Received: May. 31, 2024

    Accepted: Jul. 16, 2024

    Published Online: Feb. 13, 2025

    The Author Email: Ruiqi Zhao (22205016027@stu.xust.edu.cn)

    DOI:10.3788/LOP241395

    CSTR:32186.14.LOP241395

    Topics