Laser & Optoelectronics Progress, Volume. 62, Issue 4, 0415005(2025)
LiDAR-Inertial SLAM Method Fused with Semantic Information
Fig. 3. Results of point cloud segmentation and feature extraction. (a) Original point cloud; (b) ground point cloud; (c) split point cloud; (d) edge feature point; (e) plane feature point
Fig. 5. Point cloud semantic segmentation. (a) Original point cloud; (b) semantic segmentation point cloud
Fig. 6. Dynamic obstacle removal effect. (a) Before dynamic object removal; (b) after dynamic object removal
Fig. 9. Comparison of the semantic segmentation results. (a) (b) Original image; (c) (d) image segmentation effect of the Deeplabv3+; (e) (f) image segmentation effect of the D3p-S
Fig. 10. Movement trajectory and APE error distribution of the autonomous localization test. (a) (c) Campus environment;(b) (d) KITTI-00 sequence
Fig. 12. Urban road environment mapping results. (a) (b) (c) Camera image; (d) (e) (f) semantic segmentation of the images;(g) (h) (i) semantic point cloud map; (j) semantic map of the urban road environment construction
|
|
|
Get Citation
Copy Citation Text
Chuanwei Zhang, Ruiqi Zhao. LiDAR-Inertial SLAM Method Fused with Semantic Information[J]. Laser & Optoelectronics Progress, 2025, 62(4): 0415005
Category: Machine Vision
Received: May. 31, 2024
Accepted: Jul. 16, 2024
Published Online: Feb. 13, 2025
The Author Email: Ruiqi Zhao (22205016027@stu.xust.edu.cn)
CSTR:32186.14.LOP241395