Journal of Applied Optics, Volume. 45, Issue 6, 1095(2024)

Review of low-illuminance image enhancement algorithm based on deep learning

Ziwei LI1, Jinlong LIU1、*, Huizhen YANG2, and Zhiguang ZHANG1
Author Affiliations
  • 1School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
  • 2School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China
  • show less
    References(62)

    [1] YIN D, TANG W, CHEN P et al. An improved algorithm for target detection in low light conditions[J]. Journal of Physics: Conference Series, 2203, 012045(2022).

    [2] WANG W, YUAN X, WU X et al. Fast image dehazing method based on linear transformation[J]. IEEE Transactions on Multimedia, 19, 1142-1155(2017).

    [3] KIM W, SUH S, HWANG W et al. SVD face: illumination-invariant face representation[J]. IEEE Signal Processing Letters, 21, 1336-1340(2014).

    [4] WANG W, WU X, YUAN X et al. An experiment-based review of low-light image enhancement methods[J]. IEEE Access, 8, 87884-87917(2020).

    [5] GONZALEZ R C[M]. Digital image processing(2009).

    [6] FU X, ZENG D, HUANG Y et al. A fusion-based enhancing method for weakly illuminated images[J]. Signal Processing, 129, 82-96(2016).

    [7] LAND E H, MCCANN J J. Lightness and retinex theory[J]. JOSA, 61, 1-11(1971).

    [8] CHENG H D, SHI X J. A simple and effective histogram equalization approach to image enhancement[J]. Digital signal processing, 14, 158-170(2004).

    [9] JUNG C, YANG Q, SUN T et al. Low light image enhancement with dual-tree complex wavelet transform[J]. Journal of Visual Communication and Image Representation, 42, 28-36(2017).

    [10] WANG C, WU H, JIN Z. FourLLIE: boosting low-light image enhancement by fourier frequency information[EB/OL].

    [11] YANG X, JIANG X, DU J. Low illumination image enhancement algorithm based on gamma transformation and fractional order[J]. Computational Engineering Design, 42, 762-769(2021).

    [12] WANG S, ZHENG J, HU H M et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 22, 3538-3548(2013).

    [13] LI C, GUO C, HAN L et al. Low-light image and video enhancement using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 9396-9416(2021).

    [14] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 61, 650-662(2017).

    [15] FU Z, YANG Y, TU X et al. Learning a simple low-light image enhancer from paired low-light instances[C], 22252-22261(2023).

    [16] LV F, LIU B, LU F. Fast enhancement for non-uniform illumination images using light-weight CNNs[C], 1450-1458(2020).

    [17] LI C, GUO C, LOY C C. Learning to enhance low-light image via zero-reference deep curve estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44, 4225-4238(2021).

    [18] JAIN V, SEUNG S. Natural image denoising with convolutional networks[J]. Advances in Neural Information Processing Systems, 21, 1-8(2008).

    [19] LV F, LU F, WU J et al. MBLLEN: low-light image/video enhancement using CNNs[J]. BMVC, 220, 1-4(2018).

    [20] CHEN C, CHEN Q, XU J et al. Learning to see in the dark[C], 3291-3300(2018).

    [21] LI J, LI J, FANG F et al. Luminance-aware pyramid network for low-light image enhancement[J]. IEEE Transactions on Multimedia, 23, 3153-3165(2020).

    [22] LIM S, KIM W. DSLR: deep stacked Laplacian restorer for low-light image enhancement[J]. IEEE Transactions on Multimedia, 23, 4272-4284(2020).

    [23] WANG R, ZHANG Q, FU C W et al. Underexposed photo enhancement using deep illumination estimation[C], 6849-6857(2019).

    [24] WANG L W, LIU Z S, SIU W C et al. Lightening network for low-light image enhancement[J]. IEEE Transactions on Image Processing, 29, 7984-7996(2020).

    [25] ZOTIN A. Fast algorithm of image enhancement based on multi-scale retinex[J]. Procedia Computer Science, 131, 6-14(2018).

    [26] WEI C, WANG W, YANG W et al. Deep retinex decomposition for low-light enhancement[EB/OL].

    [27] LI C, GUO J, PORIKLI F et al. LightenNet: a convolutional neural network for weakly illuminated image enhancement[J]. Pattern Recognition Letters, 104, 15-22(2018).

    [28] ZHANG Y, ZHANG J, GUO X. Kindling the darkness: a practical low-light image enhancer[C], 1632-1640(2019).

    [29] ZHANG Y, GUO X, MA J et al. Beyond brightening low-light images[J]. International Journal of Computer Vision, 129, 1013-1037(2021).

    [30] JIANG Y, GONG X, LIU D et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 30, 2340-2349(2021).

    [31] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C], 234-241(2015).

    [32] XIONG W, LIU D, SHEN X et al. Unsupervised low-light image enhancement with decoupled networks[C], 457-463(2022).

    [33] HU J, GUO X, CHEN J et al. A two-stage unsupervised approach for low light image enhancement[J]. IEEE Robotics and Automation Letters, 6, 8363-8370(2021).

    [34] MA L, MA T, LIU R et al. Toward fast, flexible, and robust low-light image enhancement[C], 5637-5646(2022).

    [35] YANG W, WANG S, FANG Y et al. From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement[C], 3063-3072(2020).

    [36] KOZLOWSKI W, SZACHNIEWICZ M, STYPULKOWSKI M et al. Dimma: semi-supervised low light image enhancement with adaptive dimming[EB/OL].

    [37] ZHANG L, ZHANG L, LIU X et al. Zero-shot restoration of back-lit images using deep internal learning[C], 1623-1631(2019).

    [38] ZHU A, ZHANG L, SHEN Y et al. Zero-shot restoration of underexposed images via robust retinex decomposition[C], 1-6(2020).

    [39] GUO C, LI C, GUO J et al. Zero-reference deep curve estimation for low-light image enhancement[C], 1780-1789(2020).

    [40] CAI J, GU S, ZHANG L. Learning a deep single image contrast enhancer from multi-exposure images[J]. IEEE Transactions on Image Processing, 27, 2049-2062(2018).

    [41] CHEN C, CHEN Q, DO M N et al. Seeing motion in the dark[C], 3185-3194(2019).

    [42] JIANG H, ZHENG Y. Learning to see moving objects in the dark[C], 7324-7333(2019).

    [43] XU X, WANG R, FU C W et al. SNR-aware low-light image enhancement[C], 17714-17724(2022).

    [44] LU K, ZHANG L. TBEFN: a two-branch exposure-fusion network for low-light image enhancement[J]. IEEE Transactions on Multimedia, 23, 4093-4105(2020).

    [45] ZHAO Z, XIONG B, WANG L et al. RetinexDIP: a unified deep framework for low-light image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 32, 1076-1088(2021).

    [46] LIU R, MA L, ZHANG J et al. Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement[C], 10561-10570(2021).

    [47] GUO X, LI Y, LING H. LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 26, 982-993(2016).

    [48] LEE C, LEE C, KIM C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 22, 5372-5384(2013).

    [49] LOH Y P, CHAN C S. Getting to know low-light images with the exclusively dark dataset[J]. Computer Vision and Image Understanding, 178, 30-42(2019).

    [50] LIU J, XU D, YANG W et al. Benchmarking low-light image enhancement and beyond[J]. International Journal of Computer Vision, 129, 1153-1184(2021).

    [51] BYCHKOVSKY V, PARIS S, CHAN E et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C], 97-104(2011).

    [52] WANG T, ZHANG K, SHEN T et al. Ultra-high-definition low-light image enhancement: a benchmark and transformer-based method[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 37, 2654-2662(2023).

    [53] ZHAO H, GALLO O, FROSIO I et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 3, 47-57(2016).

    [54] LEDIG C, THEIS L, HUSZAR F et al. Photo-realistic single image super-resolution using a generative adversarial network[C], 4681-4690(2017).

    [55] WANG X, YU K, WU S et al. Esrgan: enhanced super-resolution generative adversarial networks[C], 63-79(2018).

    [56] BONTONOU M, LASSANCE K R E C, HACENE B G et al. Introducing graph smoothness loss for training deep learning architectures[EB/OL].

    [57] BING L, HAINA Q, WEIHUA X et al. Ranking-based color constancy with limited training samples[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 12304-12320(2023).

    [58] YAN Jiebin, FANG Yuming, LIU Xuelin. The review of distortion related image quality assessment[J]. Journal of Image and Graphics, 27, 1430-1466(2022).

    [59] ANTKOWIAK J, BAINA T J, BARONCINI F V et al. Final report from the video quality experts group on the validation of objective models of video quality assessment march 2000[EB/OL].

    [60] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 21, 4695-4708(2012).

    [61] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2012).

    [62] ZHENG N, ZHOU M, DONG Y et al. Empowering low-light image enhancer through customized learnable priors[C], 12559-12569(2023).

    Tools

    Get Citation

    Copy Citation Text

    Ziwei LI, Jinlong LIU, Huizhen YANG, Zhiguang ZHANG. Review of low-illuminance image enhancement algorithm based on deep learning[J]. Journal of Applied Optics, 2024, 45(6): 1095

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 17, 2023

    Accepted: --

    Published Online: Jan. 14, 2025

    The Author Email: Jinlong LIU (刘金龙)

    DOI:10.5768/JAO202445.0609001

    Topics