LLNet[14] | SL | Stacked sparse denoising autoencoder | SRR loss | RGB | Theano | PR(2017) | https://github.com/kglore/llnet_color |
LightenNet[27] | SL | Four layers | loss | RGB | Caffe | PR(2018) | https://github.com/Li-Chongyi/low-light-codes |
MBLLEN[19] | SL | Feature extraction module; Enhancement module; Fusion module | SSIM loss; Region loss; Perceptual loss | RGB | TensorFlow | BNVC(2018) | https://github.com/Lvfeifan/MBLLEN |
RetinexNet[26] | SL | Multi-scale network | loss; Smoothness loss; Invariable reflectance loss | RGB | TensorFlow | BMVC(2018) | https://github.com/weichen582/RetinexNet |
SICE[40] | SL | Low frequency luminance; High frequency detail | loss; loss; SSIM loss | RGB | Caffe | TIP(2018) | https://github.com/csjcai/SICE |
SID[20] | SL | Amplification ratio | loss | RAW | TensorFlow | CVPR(2018) | https://github.com/cchen156/Learning-to-See-in-the-Dark |
SMD[41] | SL | Filtered results; Siamese network | Recovery loss; Self-Consistency loss | RAW | TensorFlow | ICCV(2019) | https://github.com/cchen156/Seeing-Motion-in-the-Dark |
SMOID[42] | SL | 3D U-Net | loss | RAW | TensorFlow | ICCV(2019) | https://github.com/MichaelHYJiang/Learning-to-See-Moving-Objects-in-the-Dark |
DeepUPE[23] | SL | Illumination map | loss; Color loss; Smoothness loss | RGB | TensorFlow | ACM(2019) | https://github.com/dvlab-research/DeepUPE |
EnlightenGAN[30] | UL | Attention map; Self-regularzation | Adversarial loss; Self feature preserving loss | RGB | PyTorch | arXiv(2019) | https://github.com/VITA-Group/EnlightenGAN |
KinD[29] | SL | Reflectance layers | loss; SSIM loss; Reflectance similarity loss; loss; smoothness loss; | RGB | TensorFlow | ACMMM(2019) | https://github.com/zhangyhuaee/KinD |
ExCNet[37] | ZSL | Fully connected layers | Energy minimization loss | RGB | PyTorch | ACMMM(2019) | https://cslinzhang.github.io/ExCNet/ |
DSLR[22] | SL | Laplacian pyramid; U-Net like network | loss; Color loss; Laplacian loss | RGB | PyTorch | IEEE(2020) | https://github.com/SeokjaeLIM/DSLR-release |
TBEFN[44] | SL | Three stages; U-Net like network | SSIM loss; Perceptual loss Smoothness loss; | RGB | PyTorch | IEEE(2020) | https://github.com/lukun199/TBEFN |
Zero-DCE[39] | ZSL | Fully connected network | Illumination smoothness loss; Spatial consistency loss; Color constancy loss | RGB | PyTorch | CVPR(2020) | https://github.com/soumik12345/Zero-DCE |
DRBN[35] | SSL | Recursive network | SSIM loss; Perceptual loss; Adversarial loss | RGB | PyTorch | CVPR(2021) | https://github.com/flyywh/CVPR-2020-Semi-Low-Light |
Retinex DIP[45] | ZSL | Encoder-decoder network | Reflectance loss; Smoothness loss | RGB | PyTorch | IEEE(2021) | https://github.com/zhaozunjin/RetinexDIP |
RUAS[46] | ZSL | Neural architecture search | Cooperative loss; Similar Loss; Total variation loss | RGB | PyTorch | CVPR (2021) | https://github.com/KarelZhang/RUAS |
SCI[34] | UL | Self-Calibrated Illumination | Fidelity loss; Smoothness loss | RGB | PyTorch | CVPR(2022) | https://github.com/tengyu1998/SCI |
SNR-aware[43] | SL | SNR-guided attention | Charbonnier loss; Perceptual loss | RGB | PyTorch | CVPR(2022) | https://github.com/dvlab-research/SNR-Aware-Low-Light-Enhance |
Dimma[36] | SSL | Mixture density network; U-Net like network | Mean squared error loss; Perceptual loss | RGB | PyTorch | arXiv(2023) | https://github.com/WojciechKoz/Dimma |
PairLIE[15] | UL | Encoder-decoder networks | Projection Loss; Retinex Loss; Reflectance consistency loss | RGB | PyTorch | CVPR(2023) | https://github.com/zhenqifu/PairLIE |
CUE[62] | SL | Masked autoencoder; Customized learnable priors | Illumination smoothness loss; Noise prior loss | RGB | PyTorch | ICCV(2023) | https://github.com/zheng980629/CUE |