Journal of Applied Optics, Volume. 45, Issue 6, 1095(2024)

Review of low-illuminance image enhancement algorithm based on deep learning

Ziwei LI1, Jinlong LIU1、*, Huizhen YANG2, and Zhiguang ZHANG1
Author Affiliations
  • 1School of Electronic Engineering, Jiangsu Ocean University, Lianyungang 222005, China
  • 2School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China
  • show less
    Figures & Tables(8)
    Examples of low-illuminance images in some paired low-light datasets (row 1 refers to low-light images, and row 2 refers to reference images)
    Examples of low-illuminance images in some unpaired low-light datasets
    Contrast of low-illuminance images enhancement effect in MIT-Adobe FiveK-test dataset with different methods
    Contrast of low-illuminance images enhancement effect in LOL-test dataset with different methods
    • Table 1. Representative low-illuminance image enhancement methods based on deep learning

      View table
      View in Article

      Table 1. Representative low-illuminance image enhancement methods based on deep learning

      MethodLearinngNetwork structure(model)Loss functionFormatCodePublicationProject address
      LLNet[14]SLStacked sparse denoising autoencoderSRR lossRGBTheanoPR(2017)https://github.com/kglore/llnet_color
      LightenNet[27]SLFour layersL2 lossRGBCaffePR(2018)https://github.com/Li-Chongyi/low-light-codes
      MBLLEN[19]SLFeature extraction module; Enhancement module; Fusion moduleSSIM loss; Region loss; Perceptual lossRGBTensorFlowBNVC(2018)https://github.com/Lvfeifan/MBLLEN
      RetinexNet[26]SLMulti-scale networkL1 loss; Smoothness loss; Invariable reflectance lossRGBTensorFlowBMVC(2018)https://github.com/weichen582/RetinexNet
      SICE[40]SLLow frequency luminance; High frequency detailL1 loss; L2 loss; SSIM lossRGBCaffeTIP(2018)https://github.com/csjcai/SICE
      SID[20]SLAmplification ratioL1 lossRAWTensorFlowCVPR(2018)https://github.com/cchen156/Learning-to-See-in-the-Dark
      SMD[41]SLFiltered results; Siamese networkRecovery loss; Self-Consistency lossRAWTensorFlowICCV(2019)https://github.com/cchen156/Seeing-Motion-in-the-Dark
      SMOID[42]SL3D U-NetL1 lossRAWTensorFlowICCV(2019)https://github.com/MichaelHYJiang/Learning-to-See-Moving-Objects-in-the-Dark
      DeepUPE[23]SLIllumination mapL1 loss; Color loss; Smoothness lossRGBTensorFlowACM(2019)https://github.com/dvlab-research/DeepUPE
      EnlightenGAN[30]ULAttention map; Self-regularzationAdversarial loss; Self feature preserving lossRGBPyTorcharXiv(2019)https://github.com/VITA-Group/EnlightenGAN
      KinD[29]SLReflectance layersL1 loss; SSIM loss; Reflectance similarity loss; L2 loss; smoothness loss;RGBTensorFlowACMMM(2019)https://github.com/zhangyhuaee/KinD
      ExCNet[37]ZSLFully connected layersEnergy minimization lossRGBPyTorchACMMM(2019)https://cslinzhang.github.io/ExCNet/
      DSLR[22]SLLaplacian pyramid; U-Net like networkL2 loss; Color loss; Laplacian lossRGBPyTorchIEEE(2020)https://github.com/SeokjaeLIM/DSLR-release
      TBEFN[44]SLThree stages; U-Net like networkSSIM loss; Perceptual loss Smoothness loss;RGBPyTorchIEEE(2020)https://github.com/lukun199/TBEFN
      Zero-DCE[39]ZSLFully connected networkIllumination smoothness loss; Spatial consistency loss; Color constancy lossRGBPyTorchCVPR(2020)https://github.com/soumik12345/Zero-DCE
      DRBN[35]SSLRecursive networkSSIM loss; Perceptual loss; Adversarial lossRGBPyTorchCVPR(2021)https://github.com/flyywh/CVPR-2020-Semi-Low-Light
      Retinex DIP[45]ZSLEncoder-decoder networkReflectance loss; Smoothness lossRGBPyTorchIEEE(2021)https://github.com/zhaozunjin/RetinexDIP
      RUAS[46]ZSLNeural architecture searchCooperative loss; Similar Loss; Total variation lossRGBPyTorchCVPR (2021)https://github.com/KarelZhang/RUAS
      SCI[34]ULSelf-Calibrated IlluminationFidelity loss; Smoothness lossRGBPyTorchCVPR(2022)https://github.com/tengyu1998/SCI
      SNR-aware[43]SLSNR-guided attentionCharbonnier loss; Perceptual lossRGBPyTorchCVPR(2022)https://github.com/dvlab-research/SNR-Aware-Low-Light-Enhance
      Dimma[36]SSLMixture density network; U-Net like networkMean squared error loss; Perceptual lossRGBPyTorcharXiv(2023)https://github.com/WojciechKoz/Dimma
      PairLIE[15]ULEncoder-decoder networksProjection Loss; Retinex Loss; Reflectance consistency lossRGBPyTorchCVPR(2023)https://github.com/zhenqifu/PairLIE
      CUE[62]SLMasked autoencoder; Customized learnable priorsIllumination smoothness loss; Noise prior lossRGBPyTorchICCV(2023)https://github.com/zheng980629/CUE
    • Table 2. Summary of low-illuminance image enhancement dataset

      View table
      View in Article

      Table 2. Summary of low-illuminance image enhancement dataset

      DatasetDateNumberResolution/pixelFormatReal/ SyntheticPairedDownload link
      LIME[47]201710326×326~2 000×15000RGBRealNohttps://github.com/estija/LIME
      NPE[12]201385267×304~749×492RGBRealNohttps://github.com/Spirals-Team/npe-dataset
      DICM[48]201364481×321RGBRealNohttps://github.com/JoshuaEbenezer/LDR
      ExDark[49]20197363500×332~1600×1066RGBRealNohttps://github.com/cs-chan/Exclusively-Dark-Image-Dataset
      VE-LOL-H[50]2021109401080×720RGBRealNohttps://flyywh.github.io/IJCV2021LowLight_VELOL/
      SID[20]201850944240×2832 or 6000×4000RAWRealYeshttps://github.com/cchen156/Learning-to-See-in-the-Dark
      LOL[26]2018789400×600RGBRealYeshttps://daooshee.github.io/BMVC2018website/
      SICE[40]201844133000×2 000 or 6000×4 000RGBRealYeshttps://github.com/csjcai/SICE
      MIT-Adobe Fivek[51]20115000~6048×4032RAWReal+ SyntheticYeshttps://data.csail.mit.edu/graphics/fivek/
      DRV[41]20192023672×5496RAWRealYeshttps://github.com/cchen156/Seeing-Motion-in-the-Dark
      VE-LOL-L[50]20212500400×600RGBReal+ SyntheticYeshttps://flyywh.github.io/IJCV2021LowLight_VELOL/
      UHD-LOL[52]2023110654000 or 8000×8000RGBRealYeshttps://github.com/TaoWangzj/LLFormer
    • Table 3. Performance comparison on MIT-Adobe FiveK-test dataset

      View table
      View in Article

      Table 3. Performance comparison on MIT-Adobe FiveK-test dataset

      MetnodMSE↓PSNR↑SSIM↑NIQE↓BRISQUE↓
      input[51]1.72314.8250.7646.12431.183
      LLNet[14]4.2419.6980.4736.68838.794
      lightenNet[27]4.17215.1390.6356.97129.159
      MBLLEN[19]1.26714.9650.8636.94732.318
      RetinexNet[26]3.94311.3330.4924.03626.355
      KinD[29]1.60914.0540.5584.21735.661
      TBEFN[44]3.6909.7600.4615.30830.181
      EnlightenGAN[30]3.83714.5980.7933.91531.345
      SCI[34]3.60814.8200.7233.80129.395
      ExCNet[37]2.92712.6980.4737.64838.794
      Zero-DCE[39]3.36012.4160.7364.03731.637
      RRDNet[38]6.1999.9660.4165.17337.278
      RUAS[46]3.3769.5880.4604.19427.971
      DRBN[35]3.41013.6390.7544.36138.904
    • Table 4. Performance comparison on LOL-test dataset

      View table
      View in Article

      Table 4. Performance comparison on LOL-test dataset

      MetnodMSE↓PSNR↑SSIM↑NIQE↓BRISQUE↓
      input[26]9.7127.9510.1317.94842.153
      LLNet[14]1.08016.5830.7155.45338.549
      lightenNet[27]7.99311.8760.4285.39413.440
      MBLLEN[19]1.17218.2570.7235.31812.238
      RetinexNet[26]1.71416.1410.4645.70238.681
      KinD[29]1.13316.2400.7044.76427.438
      TBEFN[44]1.44516.0020.7303.98310.956
      EnlightenGAN[30]1.82415.9970.7153.72011.070
      SCI[34]1.50315.6540.4913.30814.863
      ExCNet[37]2.75215.3700.5384.64819.134
      Zero-DCE[39]2.85115.2780.5355.59615.408
      RRDNet[38]5.99313.9820.4614.90914.071
      RUAS[46]3.14414.6670.4165.62512.287
      DRBN[35]2.62215.0470.4325.12122.781
    Tools

    Get Citation

    Copy Citation Text

    Ziwei LI, Jinlong LIU, Huizhen YANG, Zhiguang ZHANG. Review of low-illuminance image enhancement algorithm based on deep learning[J]. Journal of Applied Optics, 2024, 45(6): 1095

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 17, 2023

    Accepted: --

    Published Online: Jan. 14, 2025

    The Author Email: Jinlong LIU (刘金龙)

    DOI:10.5768/JAO202445.0609001

    Topics