Chinese Journal of Ship Research, Volume. 17, Issue 2, 98(2022)
Accurate track control of unmanned underwater vehicle under complex disturbances
[1] XIANG X B, LAPIERRE L, JOUVENCEL B. Smooth transition of AUV motion control: from fully-actuated to under-actuated configuration[J]. Robotics and Autonomous Systems, 67, 14-22(2015).
[2] SANTHAKUMAR M, ASOKAN T. Power efficient dynamic station keeping control of a flat-fish type autonomous underwater vehicle through design modifications of thruster configuration[J]. Ocean Engineering, 58, 11-21(2013).
[3] LI H P, YAN W S. Model predictive stabilization of constrained underactuated autonomous underwater vehicles with guaranteed feasibility and stability[J]. IEEE/ASME Transactions on Mechatronics, 22, 1185-1194(2017).
[4] SHEN C, SHI Y. Distributed implementation of nonlinear model predictive control for AUV trajectory tracking[J]. Automatica, 115, 108863(2020).
[5] QIAO L, ZHANG W D. Double-loop integral terminal sliding mode tracking control for UUVs with adaptive dynamic compensation of uncertainties and disturbances[J]. IEEE Journal of Oceanic Engineering, 44, 29-53(2019).
[7] [7] QIAO L, ZHANG W D. Doubleloop chatteringfree adaptive integral sliding mode control f underwater vehicles[C]OCEANS 2016Shanghai. Shanghai: IEEE, 2016: 16.
[8] REZAZADEGAN F, SHOJAEI K, SHEIKHOLESLAM F et al. A novel approach to 6-DOF adaptive trajectory tracking control of an AUV in the presence of parameter uncertainties[J]. Ocean Engineering, 107, 246-258(2015).
[9] GUERRERO J, TORRES J, CREUZE V et al. Trajectory tracking for autonomous underwater vehicle: an adaptive approach[J]. Ocean Engineering, 172, 511-522(2019).
[10] QIAO L, ZHANG W D. Adaptive non-singular integral terminal sliding mode tracking control for autonomous underwater vehicles[J]. IET Control Theory & Applications, 11, 1293-1306(2017).
[15] WANG N, KARIMI H R. Successive waypoints tracking of an underactuated surface vehicle[J]. IEEE Transactions on Industrial Informatics, 16, 898-908(2020).
[16] WANG N, HE H K. Dynamics-level finite-time fuzzy monocular visual servo of an unmanned surface vehicle[J]. IEEE Transactions on Industrial Electronics, 67, 9648-9658(2020).
[18] [18] BHAT S P, BERNSTEIN D S. Finitetime stability of homogeneous systems[C]Proceedings of the 1997 American Control Conference (Cat. No. 97CH36041). Albuquerque: IEEE, 1997: 25132514.
[19] SHTESSEL Y B, SHKOLNIKOV I A, LEVANT A. Smooth second-order sliding modes: missile guidance application[J]. Automatica, 43, 1470-1476(2007).
[20] [20] FOSSEN T I. Guidance control of ocean vehicles[M]. Chichester: Wiley, 1994.
[21] FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 38, 2159-2167(2002).
[23] [23] WANG N, HE H K. Extreme learningbased monocular visual servo of an unmanned surface vessel[J]. IEEE Transactions on Industrial Infmatics, 2020. doi: 10.1109TII.2020.3033794.
[24] WANG N, SU S F. Finite-time unknown observer-based interactive trajectory tracking control of asymmetric underactuated surface vehicles[J]. IEEE Transactions on Control Systems Technology, 29, 794-803(2021).
[25] WANG N, Er M J. Self-constructing adaptive robust fuzzy neural tracking control of surface vehicles with uncertainties and unknown disturbances[J]. IEEE Transactions on Control Systems Technology, 23, 991-1002(2015).
[26] WANG N, DENG Q, XIE G M et al. Hybrid finite-time trajectory tracking control of a quadrotor[J]. ISA Transactions, 90, 278-286(2019).
Get Citation
Copy Citation Text
Haohua CHEN, Hong ZHAO, Ning WANG, Chen GUO, Ting LU, Ning WANG. Accurate track control of unmanned underwater vehicle under complex disturbances[J]. Chinese Journal of Ship Research, 2022, 17(2): 98
Category: Ship Design and Performance
Received: Dec. 23, 2020
Accepted: --
Published Online: Mar. 24, 2025
The Author Email: