Chinese Journal of Lasers, Volume. 49, Issue 15, 1507202(2022)
Research Progress in Optical Interference Microscopy Toward Three-Dimensional Imaging of Biological Samples
[1] Zernike F. Phase contrast, a new method for the microscopic observation of transparent objects[J]. Physica, 9, 686-698(1942).
[2] Yu X, Hong J, Liu C G et al. Review of digital holographic microscopy for three-dimensional profiling and tracking[J]. Optical Engineering, 53, 112306(2014).
[3] Zhang X, Wang S Y, Kong Y et al. Transmission mode K-domain transform based digital holographic three-dimensional imaging technology[J]. Chinese Journal of Lasers, 48, 2109001(2021).
[4] Feng F, Tian A L, Liu B C et al. Full-field three-dimensional test for scratch defects using digital holographic scanning imaging system[J]. Chinese Journal of Lasers, 47, 0409003(2020).
[5] Li J C, Gui J B, Song Q H et al. Research on complete detection and reconstruction of object image in digital image plane holography[J]. Acta Optica Sinca, 42, 1309001(2022).
[6] Zhou W J, Zou S, He D K et al. Speckle noise reduction of holograms based on spectral convolutional neural network[J]. Acta Optica Sinica, 40, 0509001(2020).
[7] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[8] Rosen J, Brooker G. Digital spatially incoherent Fresnel holography[J]. Optics Letters, 32, 912-914(2007).
[9] Wang Y, Kanchanawong P. Three-dimensional super resolution microscopy of F-actin filaments by interferometric photo activated localization microscopy (iPALM)[J]. Journal of Visualized Experiments: JoVE, 54774(2016).
[10] Bon P, Linarès-Loyez J, Feyeux M et al. Self-interference 3D super-resolution microscopy for deep tissue investigations[J]. Nature Methods, 15, 449-454(2018).
[11] Sheridan J T, Kostuk R K, Gil A F et al. Roadmap on holography[J]. Journal of Optics, 22, 123002(2020).
[12] Serebryakov V A, Boiko E V, Gatsu M V et al. Optical coherence tomography angiography in the diagnosis of ophthalmologic diseases: problems and prospects (review)[J]. Journal of Optical Technology, 87, 67-93(2020).
[13] Rosen J, Brooker G. Non-scanning motionless fluorescence three-dimensional holographic microscopy[J]. Nature Photonics, 2, 190-195(2008).
[14] Siegel N, Lupashin V, Storrie B et al. High-magnification super-resolution FINCH microscopy using birefringent crystal lens interferometers[J]. Nature Photonics, 10, 802-808(2016).
[15] Man T L, Wan Y H, Yan W J et al. Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples[J]. Biomedical Optics Express, 9, 2614-2626(2018).
[16] Gabor D. A new microscopic principle[J]. Nature, 161, 777-778(1948).
[17] Leith E N, Upatnieks J. Holography with achromatic-fringe systems[J]. Journal of the Optical Society of America, 57, 975-980(1967).
[18] Vanligten R F, Osterberg H. Holographic microscopy[J]. Nature, 211, 282-283(1966).
[19] Singh V, Tayal S, Mehta D S. Highly stable wide-field common path digital holographic microscope based on a Fresnel biprism interferometer[J]. OSA Continuum, 1, 48-55(2018).
[20] Guo R L, Barnea I, Shaked N T. Low-coherence shearing interferometry with constant off-axis angle[J]. Frontiers in Physics, 8, 611679(2021).
[21] Ding H F, Popescu G. Instantaneous spatial light interference microscopy[J]. Optics Express, 18, 1569-1575(2010).
[22] Shaked N T. Quantitative phase microscopy of biological samples using a portable interferometer[J]. Optics Letters, 37, 2016-2018(2012).
[23] Bhaduri B, Pham H, Mir M et al. Diffraction phase microscopy with white light[J]. Optics Letters, 37, 1094-1096(2012).
[24] Mann C J, Yu L F, Lo C M et al. High-resolution quantitative phase-contrast microscopy by digital holography[J]. Optics Express, 13, 8693-8698(2005).
[25] Yu L F, Mohanty S, Zhang J et al. Digital holographic microscopy for quantitative cell dynamic evaluation during laser microsurgery[J]. Optics Express, 17, 12031-12038(2009).
[26] Yu X, Cross M, Liu C G et al. Measurement of the traction force of biological cells by digital holography[J]. Biomedical Optics Express, 3, 153-159(2012).
[27] Ferraro P, Alferi D, de Nicola S et al. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction[J]. Optics Letters, 31, 1405-1407(2006).
[28] Miccio L, Grilli S, Finizio A et al. Lipid particle detection by means digital holography and lateral shear interferometry[J]. Proceedings of SPIE, 6631, 66310G(2007).
[29] Coppola G, di Caprio G, Gioffré M et al. Digital self-referencing quantitative phase microscopy by wavefront folding in holographic image reconstruction[J]. Optics Letters, 35, 3390-3392(2010).
[30] Merola F, Miccio L, Paturzo M et al. Driving and analysis of micro-objects by digital holographic microscope in microfluidics[J]. Optics Letters, 36, 3079-3081(2011).
[31] Kim M K. Applications of digital holography in biomedical microscopy[J]. Journal of the Optical Society of Korea, 14, 77-89(2010).
[32] Choi W, Fang-Yen C, Badizadegan K et al. Tomographic phase microscopy[J]. Nature Methods, 4, 717-719(2007).
[33] Zhao J, Wang D Y, Li Y et al. Experimental study on the quantitative phase-contrast imaging of the biological samples by digital holographic microscopy[J]. Chinese Journal of Lasers, 37, 2906-2911(2010).
[34] Kim M K. Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography[J]. Optics Express, 7, 305-310(2000).
[35] Javidi B, Moon I, Yeom S et al. Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography[J]. Optics Express, 13, 4492-4506(2005).
[36] You J W, Kim S, Kim D. High speed volumetric thickness profile measurement based on full-field wavelength scanning interferometer[J]. Optics Express, 16, 21022-21031(2008).
[37] Jeong S J, Hong C K. Illumination-angle-scanning digital interference holography for optical section imaging[J]. Optics Letters, 33, 2392-2394(2008).
[38] Choi W S, Fang-Yen C, Badizadegan K et al. Extended depth of focus in tomographic phase microscopy using a propagation algorithm[J]. Optics Letters, 33, 171-173(2008).
[39] Poon T C. Optical scanning holography: a review of recent progress[J]. Journal of the Optical Society of Korea, 13, 406-415(2009).
[40] Kühn J, Montfort F, Colomb T et al. Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection[J]. Optics Letters, 34, 653-655(2009).
[41] Jeon Y. Rotation error correction by numerical focus adjustment in tomographic phase microscopy[J]. Optical Engineering, 48, 105801(2009).
[42] Wang Y, Wen K, Zhang M L et al. Autofocusing techniques in digital holographic microscopy and their applications (cover paper)(invited)[J]. Infrared and Laser Engineering, 50, 20200530(2021).
[43] Wang T, Yu J, Guo B Y et al. Study of rapidly reconstruction method of marine plankton 3D profile based on digital holographic microscopy[J]. Periodical of Ocean University of China, 49, 121-127(2019).
[44] Bochdansky A B, Jericho M H, Herndl G J. Development and deployment of a point-source digital inline holographic microscope for the study of plankton and particles to a depth of 6000 m[J]. Limnology and Oceanography: Methods, 11, 28-40(2013).
[45] Yu X, Liu C, Clark D C et al. Measurement of Young’s modulus of polyacrylamide gel by digital holography[C], DTuC32(2011).
[46] Kou S S, Sheppard C J. Imaging in digital holographic microscopy[J]. Optics Express, 15, 13640-13648(2007).
[47] Miccio L, Finizio A, Puglisi R et al. Dynamic DIC by digital holography microscopy for enhancing phase-contrast visualization[J]. Biomedical Optics Express, 2, 331-344(2011).
[48] Kim M K. Digital holographic microscopy: principles, techniques, and applications[J]. Proceedings of SPIE, 0180, 018005(2010).
[49] Potcoava M C, Kim M K. Optical tomography for biomedical applications by digital interference holography[J]. Measurement Science and Technology, 19, 074010(2008).
[50] Pan F, Xiao W, Liu S. Digital holographic microscopy for long-term quantitative phase-contrast imaging of living cells[J]. Chinese Journal of Lasers, 38, 0509001(2011).
[51] Yi F L, Lee C G, Moon I K. Statistical analysis of 3D volume of red blood cells with different shapes via digital holographic microscopy[J]. Journal of the Optical Society of Korea, 16, 115-120(2012).
[52] Marquet P, Depeursinge C, Magistretti P J. Exploring neural cell dynamics with digital holographic microscopy[J]. Annual Review of Biomedical Engineering, 15, 407-431(2013).
[53] Xu W, Jericho M H, Meinertzhagen I A et al. Digital in-line holography for biological applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 98, 11301-11305(2001).
[54] Xu W, Jericho M H, Meinertzhagen I A et al. Digital in-line holography of microspheres[J]. Applied Optics, 41, 5367-5375(2002).
[55] Tang M, Liu C, Wang X P. Autofocusing and image fusion for multi-focus plankton imaging by digital holographic microscopy[J]. Applied Optics, 59, 333-345(2020).
[56] Su T W, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories[J]. Proceedings of the National Academy of Sciences of the United States of America, 109, 16018-16022(2012).
[57] Su T W, Choi I, Feng J W et al. Sperm trajectories form chiral ribbons[J]. Scientific Reports, 3, 1664(2013).
[58] Garcia-Sucerquia J, Xu W, Jericho S K et al. 4-D imaging of fluid flow with digital in-line holographic microscopy[J]. Optik, 119, 419-423(2008).
[59] Choi Y S, Lee S J. Three-dimensional volumetric measurement of red blood cell motion using digital holographic microscopy[J]. Applied Optics, 48, 2983-2990(2009).
[60] Lee S J, Seo K W, Choi Y S et al. Three-dimensional motion measurements of free-swimming microorganisms using digital holographic microscopy[J]. Measurement Science and Technology, 22, 064004(2011).
[61] Han Z Y, Yu J, Wang J C et al. The research of under water bubble field on digital holography[J]. Optical Technique, 36, 617-621(2010).
[62] Tan S Z, Zhang F Y, Huang Q M et al. Measuring and calculating geometrical parameters of marine plankton using digital laser holographic imaging[J]. Optik, 125, 5119-5123(2014).
[63] Rong L, Wang D Y, Wang Y X et al. Phase retrieval methods in in-line digital holography[J]. Chinese Journal of Lasers, 41, 0209006(2014).
[64] Oe K, Nomura T. Twin-image reduction method using a diffuser for phase imaging in-line digital holography[J]. Applied Optics, 57, 5652-5656(2018).
[65] Ma L H, Wang H, Li Y et al. Partition calculation for zero-order and conjugate image removal in digital in-line holography[J]. Optics Express, 20, 1805-1815(2012).
[66] Chen G L, Lin C Y, Kuo M K et al. Numerical suppression of zero-order image in digital holography[J]. Optics Express, 15, 8851-8856(2007).
[67] Stoykova E, Kang H, Park J. Twin-image problem in digital holography: a survey (invited paper)[J]. Chinese Optics Letters, 12, 60013-60024(2014).
[68] Wu Y C, Ozcan A. Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring[J]. Methods, 136, 4-16(2018).
[69] Pandiyan V P, John R. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy[J]. Applied Optics, 55, A54-A59(2016).
[70] Wu X J, Sun J S, Zhang J L et al. Wavelength-scanning lensfree on-chip microscopy for wide-field pixel-super-resolved quantitative phase imaging[J]. Optics Letters, 46, 2023-2026(2021).
[71] Yamaguchi I, Zhang T. Phase-shifting digital holography[J]. Optics Letters, 22, 1268-1270(1997).
[72] Li J[D]. Study of phase-shift extraction algorithm and its application in generalized phase-shifting digital holography, 1-135(2014).
[73] Nomura T, Shinomura K. Generalized sequential four-step phase-shifting color digital holography[J]. Applied Optics, 56, 6851-6854(2017).
[74] Imbe M, Nomura T. Study of reference waves in single-exposure generalized phase-shifting digital holography[J]. Applied Optics, 52, 4097-4102(2013).
[75] Yoshikawa N, Shiratori T, Kajihara K. Robust phase-shift estimation method for statistical generalized phase-shifting digital holography[J]. Optics Express, 22, 14155-14165(2014).
[76] Situ G H, Ryle J P, Gopinathan U et al. Generalized in-line digital holographic technique based on intensity measurements at two different planes[J]. Applied Optics, 47, 711-717(2008).
[77] Kakue T, Moritani Y, Ito K et al. Image quality improvement of parallel four-step phase-shifting digital holography by using the algorithm of parallel two-step phase-shifting digital holography[J]. Optics Express, 18, 9555-9560(2010).
[78] Awatsuji Y, Sasada M, Kubota T. Parallel quasi-phase-shifting digital holography[J]. Applied Physics Letters, 85, 1069-1071(2004).
[79] Awatsuji Y, Tahara T, Kaneko A et al. Parallel two-step phase-shifting digital holography[J]. Applied Optics, 47, D183-D189(2008).
[80] Wan Y H, Man T L, Wu F et al. Parallel phase-shifting self-interference digital holography with faithful reconstruction using compressive sensing[J]. Optics and Lasers in Engineering, 86, 38-43(2016).
[81] Martínez-León L, Araiza-E M, Javidi B et al. Single-shot digital holography by use of the fractional Talbot effect[J]. Optics Express, 17, 12900-12909(2009).
[82] Brady D J, Choi K, Marks D L et al. Compressive holography[J]. Optics Express, 17, 13040-13049(2009).
[83] Balasubramani V, Kuś A, Tu H Y et al. Holographic tomography: techniques and biomedical applications[J]. Applied Optics, 60, B65-B80(2021).
[84] Charrière F, Marian A, Montfort F et al. Cell refractive index tomography by digital holographic microscopy[J]. Optics Letters, 31, 178-180(2006).
[85] Liu Y, Wang Z, Huang J H. Recent progress on aberration compensation and coherent noise suppression in digital holography[J]. Applied Sciences, 8, 444(2018).
[86] Choi Y, Yang T D, Lee K J et al. Full-field and single-shot quantitative phase microscopy using dynamic speckle illumination[J]. Optics Letters, 36, 2465-2467(2011).
[87] Qin Y, Zhong J G. Quality evaluation of phase reconstruction in LED-based digital holography[J]. Chinese Optics Letters, 7, 1146-1150(2009).
[88] Guo R L, Yao B L, Gao P et al. Off-axis digital holographic microscopy with LED illumination based on polarization filtering[J]. Applied Optics, 52, 8233-8238(2013).
[89] Cho J, Lim J, Jeon S et al. Dual-wavelength off-axis digital holography using a single light-emitting diode[J]. Optics Express, 26, 2123-2131(2018).
[90] Baek Y, Lee K, Yoon J et al. White-light quantitative phase imaging unit[J]. Optics Express, 24, 9308-9315(2016).
[91] Wang Y, Zhang M L, Wang Y et al. Partially coherent illumination-based digital holographic microscopy and its applications[J]. Laser & Optoelectronics Progress, 58, 1811005(2021).
[92] Zhu Y, Gao W R. High-resolution full-field optical coherence tomography for biological tissue[J]. Chinese Journal of Lasers, 41, 0804002(2014).
[93] Lin Y C, Cheng C J, Poon T C. Optical sectioning with a low-coherence phase-shifting digital holographic microscope[J]. Applied Optics, 50, B25-B30(2011).
[94] Liang Z, An X Y, Zhang R et al. Imaging through turbid media based on speckled illumination and holography[J]. Acta Optica Sinica, 37, 0811002(2017).
[95] Abdelsalam D G, Yasui T. High brightness, low coherence, digital holographic microscopy for 3D visualization of an in-vitro sandwiched biological sample[J]. Applied Optics, 56, F1-F6(2017).
[96] Wojtkowski M, Srinivasan V, Fujimoto J G et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography[J]. Ophthalmology, 112, 1734-1746(2005).
[97] Shao Y L, Tao A Z, Jiang H et al. Simultaneous real-time imaging of the ocular anterior segment including the ciliary muscle during accommodation[J]. Biomedical Optics Express, 4, 466-480(2013).
[98] Kim K H, Burns J A, Bernstein J J et al. In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter[J]. Optics Express, 18, 14644-14653(2010).
[99] Willemse J, Wener R R, Feroldi F et al. Polarization-sensitive optical coherence tomography in end-stage lung diseases: an ex vivo pilot study[J]. Biomedical Optics Express, 12, 6796-6813(2021).
[100] Hee M R, Swanson E A, Fujimoto J G et al. Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging[J]. Journal of the Optical Society of America B, 9, 903-908(1992).
[101] de Boer J F, Milner T E, van Gemert M J et al. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography[J]. Optics Letters, 22, 934-936(1997).
[102] Park B H, Pierce M C, Cense B et al. Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography[J]. Optics Letters, 30, 2587-2589(2005).
[103] Hariri L P, Villiger M, Applegate M B et al. Seeing beyond the bronchoscope to increase the diagnostic yield of bronchoscopic biopsy[J]. American Journal of Respiratory and Critical Care Medicine, 187, 125-129(2013).
[104] Hariri L P, Adams D C, Applegate M B et al. Distinguishing tumor from associated fibrosis to increase diagnostic biopsy yield with polarization-sensitive optical coherence tomography[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 25, 5242-5249(2019).
[105] Schmitt J M. Optical coherence tomography (OCT): a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 5, 1205-1215(1999).
[106] Goel R K, Kaouk J H. Optical coherence tomography: the past, present and future[J]. Journal of Robotic Surgery, 1, 179-184(2007).
[107] Bouma B E, Villiger M, Otsuka K et al. Intravascular optical coherence tomography[J]. Biomedical Optics Express, 8, 2660-2686(2017).
[108] Drexler W. Ultrahigh-resolution optical coherence tomography[J]. Journal of Biomedical Optics, 9, 47-74(2004).
[109] Tomlins P H, Wang R K. Theory, developments and applications of optical coherence tomography[J]. Journal of Physics D: Applied Physics, 38, 2519-2535(2005).
[110] de Boer J F, Milner T E. Review of polarization sensitive optical coherence tomography and Stokes vector determination[J]. Journal of Biomedical Optics, 7, 359-371(2002).
[111] Mertz L, Young N O. Fresnel transformation of images (Fresnel coding and decoding of images)[C], 305-310(1961).
[112] Lohmann A W. Wavefront reconstruction for incoherent objects[J]. JOSA, 55, 1555-1556(1965).
[113] Stroke G W, Restrick R C. Holography with spatially noncoherent light[J]. Applied Physics Letters, 7, 229-231(1965).
[114] Cochran G. New method of making Fresnel transforms with incoherent light[J]. Journal of the Optical Society of America, 56, 1513-1517(1966).
[115] Mallick S, Roblin M L. Fourier transform holography using a quasimonochromatic incoherent source[J]. Applied Optics, 10, 596-598(1971).
[116] Bryngdahl O, Lohmann A. One-dimensional holography with spatially incoherent light[J]. Journal of the Optical Society of America, 58, 625-628(1968).
[117] Kim S G, Lee B, Kim E S. Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram[J]. Applied Optics, 36, 4784-4791(1997).
[118] Kim S G, Ryeom J. Phase error analysis of incoherent triangular holography[J]. Applied Optics, 48, H231-H237(2009).
[119] Kim S G. Analysis of effect of phase error sources of polarization components in incoherent triangular holography[J]. Journal of the Optical Society of Korea, 16, 256-262(2012).
[120] Brooker G, Siegel N, Rosen J et al. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens[J]. Optics Letters, 38, 5264-5267(2013).
[121] Rosen J, Siegel N, Brooker G. Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging[J]. Optics Express, 19, 26249-26268(2011).
[122] Kelner R, Rosen J. Spatially incoherent single channel digital Fourier holography[J]. Optics Letters, 37, 3723-3725(2012).
[123] Kelner R, Rosen J, Brooker G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference[J]. Optics Express, 21, 20131-20144(2013).
[124] Quan X Y, Matoba O, Awatsuji Y. Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings[J]. Optics Letters, 42, 383-386(2017).
[125] Nobukawa T, Muroi T, Katano Y et al. Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings[J]. Optics Letters, 43, 1698-1701(2018).
[126] Siegel N, Brooker G. Single shot holographic super-resolution microscopy[J]. Optics Express, 29, 15953-15968(2021).
[127] Siegel N, Brooker G. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy[J]. Optics Express, 22, 22298-22307(2014).
[128] Weng J W, Yang C P, Li H. Self-interference incoherent digital holography by compressive sensing[J]. Acta Optica Sinica, 36, 0209001(2016).
[129] Man T L, Wan Y H, Wu F et al. Self-interference compressive digital holography with improved axial resolution and signal-to-noise ratio[J]. Applied Optics, 56, F91-F96(2017).
[130] Wan Y H, Liu C, Man T L et al. Incoherent correlation digital holography: principle, development, and applications[J]. Laser & Optoelectronics Progress, 58, 1811004(2021).
[131] Anand V, Katkus T, Hock Ng S et al. Review of Fresnel incoherent correlation holography with linear and non-linear correlations[J]. Chinese Optics Letters, 19, 020501(2021).
[132] Rosen J, Hai N, Rai M R. Recent progress in digital holography with dynamic diffractive phase apertures[J]. Applied Optics, 61, B171-B180(2022).
[133] Rosen J, Vijayakumar A, Kumar M et al. Recent advances in self-interference incoherent digital holography[J]. Advances in Optics and Photonics, 11, 1-66(2019).
[134] Man T L, Wan Y H, Yan W J et al. Adaptive optics via self-interference digital holography for non-scanning three-dimensional imaging in biological samples[J]. Biomedical Optics Express, 9, 2614-2626(2018).
[135] Quan X Y, Kumar M, Matoba O et al. Three-dimensional stimulation and imaging-based functional optical microscopy of biological cells[J]. Optics Letters, 43, 5447-5450(2018).
[136] Leung B O, Chou K C. Review of super-resolution fluorescence microscopy for biology[J]. Applied Spectroscopy, 65, 967-980(2011).
[137] Franke C, Sauer M, van de Linde S. Photometry unlocks 3D information from 2D localization microscopy data[J]. Nature Methods, 14, 41-44(2017).
[138] Bourg N, Mayet C, Dupuis G et al. Direct optical nanoscopy with axially localized detection[J]. Nature Photonics, 9, 587-593(2015).
[139] Roider C, Jesacher A, Bernet S et al. Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation[J]. Optics Express, 22, 4029-4037(2014).
[140] Linarès-Loyez J, Ferreira J S, Rossier O et al. Self-interference (SELFI) microscopy for live super-resolution imaging and single particle tracking in 3D[J]. Frontiers in Physics, 7, 68(2019).
[141] Marar A, Kner P. Three-dimensional nanoscale localization of point-like objects using self-interference digital holography[J]. Optics Letters, 45, 591-594(2020).
[142] Marar A, Kner P. Fundamental precision bounds for three-dimensional optical localization microscopy using self-interference digital holography[J]. Biomedical Optics Express, 12, 20-40(2020).
Get Citation
Copy Citation Text
Tianlong Man, Yuhong Wan, Mengjing Jian, Wenxue Zhang, Minghua Zhang, Teng Ma, Qin Zhang. Research Progress in Optical Interference Microscopy Toward Three-Dimensional Imaging of Biological Samples[J]. Chinese Journal of Lasers, 2022, 49(15): 1507202
Category: Biomedical Optical Imaging
Received: Jan. 11, 2022
Accepted: Feb. 28, 2022
Published Online: Jul. 29, 2022
The Author Email: Wan Yuhong (yhongw@bjut.edu.cn)