Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 245(2025)

Review of Raman lidar atmospheric water vapor detection technology

GONG Xin1,3、*, Li Hui2,3, Delong Xiu2,3, Zhang Ruizhao2,3, Mao Jiandong2,3, Zhao Hu2,3, Zhou Chunyan2,3, and Rao Zhimin2,3
Author Affiliations
  • 1College of Mechatronic Engineering, North Minzu University, Yinchuan 750021, China
  • 2College of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China
  • 3Key Laboratory of Atmospheric Environment Remote Sensing Detection in Ningxia Hui Autonomous Region,Yinchuan 750021, China
  • show less
    References(94)

    [1] Sun M H, Pang Z G et al. Research progress and prospects of ground-based BDS/GNSS water vapor monitoring in the field of water conservancy[J]. GNSS World of China, 49, 19-33(2024).

    [2] Laguë M M, Quetin G R, Boos W R. Reduced terrestrial evaporation increases atmospheric water vapor by generating cloud feedbacks[J]. Environmental Research Letters, 18, 074021(2023).

    [3] Gao F L, Cui G M, Tao L R et al. Analysis of tropospheric water vapor influence on greenhouse effect[J]. Journal of Engineering Thermophysics [, 35, 722-725(2014).

    [4] Zhou X T, Cheng Y M, Liu L et al. Significant increases in water vapor pressure correspond with climate warming globally[J]. Water, 15, 3219(2023).

    [5] Yang X Y, Wang Z T, Pan G et al. Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 17, 581-597(2022).

    [6] Antuña-Marrero J C, Román R, Cachorro V E et al. Integrated water vapor over the Arctic: Comparison between radiosondes and sun photometer observations[J]. Atmospheric Research, 270, 106059(2022).

    [7] Wang L, Hu X Q, Xu N et al. Water vapor retrievals from near-infrared channels of the advanced medium resolution spectral imager instrument onboard the Fengyun-3D satellite[J]. Advances in Atmospheric Sciences, 38, 1351-1366(2021).

    [8] Yang F, Wang J Y, Wang H et al. Assessment of the water vapor tomography based on four navigation satellite systems and their various combinations[J]. Remote Sensing, 14, 3552(2022).

    [9] Zhang W Y, Möller G, Zheng N et al. A new multi-resolution GNSS tomography method based on atmospheric water vapor distributions[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4102314(2024).

    [10] Grankov A G, Milshin A A, Novichikhin E P. Connection of cyclogenesis in the gulf of Mexico to the water vapor transport in the tropical Atlantic according to satellite microwave radiometers[J]. Russian Meteorology and Hydrology, 48, 666-671(2023).

    [11] Meunier V, Turner D D, Kollias P. On the challenges of tomography retrievals of a 2D water vapor field using ground-based microwave radiometers: An observation system simulation experiment[J]. Journal of Atmospheric and Oceanic Technology, 32, 116-130(2015).

    [12] Carroll B J, Nehrir A R, Kooi S A et al. Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): Retrieval framework and first results[J]. Atmospheric Measurement Techniques, 15, 605-626(2022).

    [13] Mariani Z, Stanton N, Whiteway J et al. Toronto water vapor lidar inter-comparison campaign[J]. Remote Sensing, 12, 3165(2020).

    [14] Yu J H, Cheng Y, Kong Z et al. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor[J]. Optics Express, 32, 3046-3061(2024).

    [15] Liu B, Wu D C, Fan A Y et al. Development of a mobile Raman-Mie lidar system for all time water vapor and aerosol detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 230-235(2011).

    [16] Wulfmeyer V, Hardesty R M, Turner D D et al. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles[J]. Reviews of Geophysics, 53, 819-895(2015).

    [17] Liu D, Yao Q R, Zhang S N et al. Research progress of temperature, humidity and pressure detection technology using Raman lidar[J]. Chinese Optics, 16, 243-257(2023).

    [18] Guo X Q, Wu D C, Wang Z Z et al. A review of atmospheric water vapor lidar calibration methods[J]. Wiley Interdisciplinary Reviews: Water, 11, e1712(2024).

    [19] Wang Y F, Cao X M, Zhang J et al. Detection and analysis of all-day atmospheric water vapor Raman lidar based on wavelet denoising algorithm[J]. Acta Optica Sinica, 38, 0201001(2018).

    [20] David L, Bock O, Thom C et al. Study and mitigation of calibration factor instabilities in a water vapor Raman lidar[J]. Atmospheric Measurement Techniques, 10, 2745-2758(2017).

    [21] Whiteman D N, Russo F, Demoz B et al. Analysis of Raman lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation[J]. Journal of Geophysical Research: Atmospheres, 111, D09-09(2006).

    [22] Dirksen R J, Sommer M, Immler F J et al. Reference quality upper-air measurements: GRUAN data processing for the vaisala RS92 radiosonde[J]. Atmospheric Measurement Techniques, 7, 4463-4490(2014).

    [23] Leblanc T, McDermid I S, Walsh T D. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring[J]. Atmospheric Measurement Techniques, 5, 17-36(2012).

    [24] Hicks-Jalali S, Sica R J, Haefele A et al. Calibration of a water vapour Raman lidar using GRUAN-certified radiosondes and a new trajectory method[J]. Atmospheric Measurement Techniques, 12, 3699-3716(2019).

    [25] Kulla B B, Ritter C. Water vapor calibration: Using a Raman lidar and radiosoundings to obtain highly resolved water vapor profiles[J]. Remote Sensing, 11, 616(2019).

    [26] Totems J, Chazette P. Calibration of a water vapour Raman lidar with a kite-based humidity sensor[J]. Atmospheric Measurement Techniques, 9, 1083-1094(2016).

    [27] Foth A, Baars H, Di Girolamo P et al. Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE[J]. Atmospheric Chemistry and Physics, 15, 7753-7763(2015).

    [28] Dai G Y, Althausen D, Hofer J et al. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data[J]. Atmospheric Measurement Techniques, 11, 2735-2748(2018).

    [29] Vural J, Merker C, Löffler M et al. Improving the representation of the atmospheric boundary layer by direct assimilation of ground-based microwave radiometer observations[J]. Quarterly Journal of the Royal Meteorological Society, 150, 1012-1028(2024).

    [30] Li X X, Dick G, Ge M R et al. Real‐time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections[J]. Geophysical Research Letters, 41, 3615-3621(2014).

    [31] Li X X, Huang J X, Li X et al. Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation[J]. GPS Solutions, 25, 107(2021).

    [32] Vérèmes H, Payen G, Keckhut P et al. Validation of the water vapor profiles of the Raman lidar at the maïdo observatory(Reunion island) calibrated with global navigation satellite system integrated water vapor[J]. Atmosphere, 10, 713(2019).

    [33] Walker M, Venable D, Whiteman D N. Gluing for Raman lidar systems using the lamp mapping technique[J]. Applied Optics, 53, 8535-8543(2014).

    [34] Venable D D, Whiteman D N, Calhoun M N et al. Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system[J]. Applied Optics, 50, 4622-4632(2011).

    [35] Whiteman D N, Venable D, Landulfo E. Comments on "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements"[J]. Applied Optics, 50, 2170-2176(2011).

    [36] Zhao P T, Zhang Y C, Li W et al. Convenient method for calibrating system constant of scanning water vapor Raman lidar[J]. Chinese Optics Letters, 8, 541-545(2010).

    [37] Dionisi D, Keckhut P, Courcoux Y et al. Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo Lidar Calibration Campaign[J]. Atmospheric Measurement Techniques, 8, 1425-1445(2015).

    [38] Dionisi D, Congeduti F, Liberti G L et al. Calibration of a multichannel water vapor Raman lidar through noncollocated operational soundings: Optimization and characterization of accuracy and variability[J]. Journal of Atmospheric and Oceanic Technology, 27, 108-121(2010).

    [39] Yang F, Gao F, Zhang C G et al. Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest[J]. Optics Letters, 48, 2595-2598(2023).

    [40] Wu D C, Wang Z E, Liu D et al. Independent calibration of water vapor Raman lidar by using additional elastic measurements at water vapor Raman wavelength[J]. EPJ Web of Conferences, 119, 25007(2016).

    [41] Reichardt J, Behrendt O, Lauermann F. Spectrometric fluorescence and Raman lidar: Absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements[J]. Atmospheric Measurement Techniques, 16, 1-13(2023).

    [42] Veselovskii I, Hu Q Y, Goloub P et al. Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements[J]. Atmospheric Measurement Techniques, 17, 1023-1036(2024).

    [43] Chouza F, Leblanc T, Brewer M et al. The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method[J]. Atmospheric Measurement Techniques, 15, 4241-4256(2022).

    [44] Cao K F, Hu S X, Wang Y J. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor[J]. Journal of Optics, 14, 035503(2012).

    [45] Bisson S E, Goldsmith J E, Mitchell M G. Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements[J]. Applied Optics, 38, 1841-1849(1999).

    [46] Mao J D, Hua D X, Wang Y F et al. Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar[J]. Optics Communications, 282, 3113-3118(2009).

    [47] Whiteman D N, Rush K, Rabenhorst S et al. Airborne and ground-based measurements using a high-performance Raman lidar[J]. Journal of Atmospheric and Oceanic Technology, 27, 1781-1801(2010).

    [48] Gao F, Stanic S, He T Y et al. Ultraviolet scanning Raman lidar with fast telescope for measurements of water vapor and aerosols in lower atmosphere[C], 8379, 360-365(2012).

    [49] Veselovskii I, Whiteman D N, Korenskiy M et al. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction[J]. Atmospheric Measurement Techniques, 8, 4111-4122(2015).

    [50] Tan M, Shang Z, Xie C et al. Raman lidar for the measurement of temperature, water vapor, and aerosol in Beijing in the winter of 2014[J]. Current Optics and Photonics, 2, 15-22(2018).

    [51] Wang Y F, Fu Q, Zhao M N et al. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi'an[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 114-126(2018).

    [52] Tan M, Wang B X, Zhuang P et al. Study on atmospheric temperature and water-vapor mixing ratio based on Raman lidar[J]. Spectroscopy and Spectral Analysis, 40, 1397-1401(2020).

    [53] Pan X L, Yi F, Liu F C et al. Diurnal temperature variations in the lower troposphere as measured by an all-day-operational pure rotational Raman lidar[J]. Applied Optics, 59, 8688-8696(2020).

    [54] Totems J, Chazette P, Baron A. Mitigation of bias sources for atmospheric temperature and humidity in the mobile Raman weather and aerosol lidar (WALI)[J]. Atmospheric Measurement Techniques, 14, 7525-7544(2021).

    [55] Li S C, Wang X, Zhang P H et al. Multi-channel pure rotational Raman spectroscopy system for all-sky absolute thermometry lidar[J]. Chinese Journal of Lasers, 49, 131-140(2022).

    [56] Satyanarayana M, Radhakrishnan S R, Presennakumar B et al. High resolution Raman lidar for simultaneous measurement of temperature and water vapor in the lower atmosphere at a coastal station, Trivandrum[C], 6409, 121-129(2006).

    [57] Wang H W, Hua D X, Wang Y F. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor[J]. Acta Physica Sinica, 62, 120701(2013).

    [58] Wang Y F, Zhang J, Tang L et al. Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar[J]. Acta Physica Sinica, 67, 259-270(2018).

    [59] Mashburn C, Borysow J. Raman spectrometer for high precision temperature sensing of atmospheric gases[J]. Applied Optics, 60, 2919-2925(2021).

    [60] Kieft T, Mashburn C, Borysow J et al. A filter-based Raman spectrometer for non-invasive imaging of atmospheric water vapor[J]. Review of Scientific Instruments, 93, 035102(2022).

    [61] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).

    [62] De Young R J. A narrow band fiber Bragg grating filter for lidar receivers[C], 494-495(2001).

    [63] Mao J D, Hua D X, Hu L L et al. Design of all-fiber Raman thermometry lidar spectroscopy system[J]. Acta Optica Sinica, 30, 7-13(2010).

    [64] Li S C, Hua D X, Wang Y F et al. Fiber-optic spectroscopic rotational Raman lidar with visible wavelength fiber Bragg grating for atmospheric temperature measurement[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 113-118(2015).

    [65] Gong X, Hua D X, Li S C et al. Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating[J]. Acta Physica Sinica, 65, 073601(2016).

    [66] Wang Y F, Jia L S, Li X X et al. Compact fiber-optic spectroscopic design and its validation in atmospheric water vapor Raman lidar[J]. Journal of the Optical Society of America B, 37, 941-948(2020).

    [67] Gong X, Li H, Zhang R et al. Design of a water vapor spectroscopy system for Raman lidar based on sampled fiber Bragg grating[J]. Optics Continuum, 3, 1389-1399(2024).

    [68] Arshinov Y, Bobrovnikov S, Serikov I et al. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J]. Applied Optics, 44, 3593-3603(2005).

    [69] Wang Y F, Hua D X, Wang H W et al. Analysis of all-fiber Raman lidar system for water vapor by fiber Fabry-Perot filters[J]. Chinese Journal of Quantum Electronics, 30, 103(2013).

    [70] Weng M, Yi F, Liu F C et al. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles[J]. Optics Express, 26, 27555-27571(2018).

    [71] Melfi S H, Lawrence J, McCormick M P. Observation of Raman scattering by water vapor in the atmosphere[J]. Applied Physics Letters, 15, 295-297(1969).

    [72] Hirschfeld T, Schildkraut E R, Tannenbaum H et al. Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy[J]. Applied Physics Letters, 22, 38-40(1973).

    [73] Renaut D, Pourny J C, Capitini R. Daytime Raman-lidar measurements of water vapor[J]. Optics Letters, 5, 233-234(1980).

    [74] Shi D C, Hua D X, Lei N et al. Research of solar-blind ultraviolet Raman lidar for water vapor measurement technology[J]. Spectroscopy and Spectral Analysis, 38, 1430-1436(2018).

    [75] Yabuki M, Kawano Y, Tottori Y et al. A Raman lidar with a deep ultraviolet laser for continuous water vapor profiling in the atmospheric boundary layer[J]. EPJ Web of Conferences, 237, 03001(2020).

    [76] Xie C B, Zhou J, Yue G M et al. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica, 26, 1281-1286(2006).

    [77] Sakai T, Nagai T, Izumi T et al. Automated compact mobile Raman lidar for water vapor measurement: Instrument description and validation by comparison with radiosonde, GNSS, and high-resolution objective analysis[J]. Atmospheric Measurement Techniques, 12, 313-326(2019).

    [78] Di Girolamo P, Franco N, Di Paolantonio M et al. Atmospheric thermodynamic profiling through the use of a micro-pulse Raman lidar system: Introducing the compact Raman lidar MARCO[J]. Sensors, 23, 8262(2023).

    [79] Whiteman D N, Schwemmer G, Berkoff T et al. Performance modeling of an airborne Raman water-vapor lidar[J]. Applied Optics, 40, 375-390(2001).

    [80] Liu B, Wang Z E, Cai Y et al. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds[J]. Optics Express, 22, 20613(2014).

    [81] Di Girolamo P, Behrendt A, Wulfmeyer V. Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: Performance simulations[J]. Optics Express, 26, 8125-8161(2018).

    [82] Whiteman D N, Di Girolamo P, Behrendt A et al. Statistical analysis of simulated spaceborne thermodynamics lidar measurements in the planetary boundary layer[J]. Frontiers in Remote Sensing, 3, 810032(2022).

    [83] Whiteman D N, Cadirola M, Venable D et al. Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere[J]. Atmospheric Measurement Techniques, 5, 2893-2916(2012).

    [84] Kim D, Baik S, Cha H et al. Lidar measurement of a full Raman spectrum of water by using a multichannel detector[J]. Journal of the Korean Physical Society, 54, 38-43(2009).

    [85] Wang Z F, Mao J D, Li J et al. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling[J]. Applied Optics, 56, 5620(2017).

    [86] Park S H, Kim Y G, Kim D H et al. Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water[J]. Journal of the Optical Society of Korea, 14, 209-214(2010).

    [87] Sica R J, Haefele A. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method[J]. Applied Optics, 55, 763-777(2016).

    [88] Liu F, Yi F, He Y et al. Spectrally resolved Raman lidar to measure backscatter spectra of atmospheric three-phase water and fluorescent aerosols simultaneously: Instrument, methodology, and preliminary results[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5703013(2022).

    [89] Klanner L, Höveler K, Khordakova D et al. A powerful lidar system capable of 1 h measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere[J]. Atmospheric Measurement Techniques, 14, 531-555(2021).

    [90] Froidevaux M, Higgins C W, Simeonov V et al. A Raman lidar to measure water vapor in the atmospheric boundary layer[J]. Advances in Water Resources, 51, 345-356(2013).

    [91] Yang F, Gao F, Li X L et al. Study on the technology of continuous laser-based lateral Raman scattering lidar for blind-free detection of water vapor in the atmosphere[J]. Acta Optica Sinica, 44, 328-336(2024).

    [92] Keckhut P, Courcoux Y, Baray J L et al. Introduction to the Maïdo Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters[J]. Journal of Applied Remote Sensing, 9, 094099(2015).

    [93] Wu S H, Dai G Y, Song X Q et al. Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique[J]. Atmospheric Measurement Techniques, 9, 1399-1413(2016).

    [94] Lange D, Behrendt A, Wulfmeyer V. Compact operational tropospheric water vapor and temperature Raman lidar with turbulence resolution[J]. Geophysical Research Letters, 46, 14844-14853(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xin GONG, Hui Li, Xiu Delong, Ruizhao Zhang, Jiandong Mao, Hu Zhao, Chunyan Zhou, Zhimin Rao. Review of Raman lidar atmospheric water vapor detection technology[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 245

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: "Advanced technology of lidar and its application in atmospheric environment" Albun

    Received: Dec. 24, 2024

    Accepted: --

    Published Online: Jun. 9, 2025

    The Author Email:

    DOI:10.3969/j.issn.1673-6141.2025.03.002

    Topics