Journal of Atmospheric and Environmental Optics, Volume. 20, Issue 3, 245(2025)
Review of Raman lidar atmospheric water vapor detection technology
[1] Sun M H, Pang Z G et al. Research progress and prospects of ground-based BDS/GNSS water vapor monitoring in the field of water conservancy[J]. GNSS World of China, 49, 19-33(2024).
[2] Laguë M M, Quetin G R, Boos W R. Reduced terrestrial evaporation increases atmospheric water vapor by generating cloud feedbacks[J]. Environmental Research Letters, 18, 074021(2023).
[3] Gao F L, Cui G M, Tao L R et al. Analysis of tropospheric water vapor influence on greenhouse effect[J]. Journal of Engineering Thermophysics [, 35, 722-725(2014).
[4] Zhou X T, Cheng Y M, Liu L et al. Significant increases in water vapor pressure correspond with climate warming globally[J]. Water, 15, 3219(2023).
[5] Yang X Y, Wang Z T, Pan G et al. Advances in atmospheric observation techniques for greenhouse gases by satellite remote sensing[J]. Journal of Atmospheric and Environmental Optics, 17, 581-597(2022).
[6] Antuña-Marrero J C, Román R, Cachorro V E et al. Integrated water vapor over the Arctic: Comparison between radiosondes and sun photometer observations[J]. Atmospheric Research, 270, 106059(2022).
[7] Wang L, Hu X Q, Xu N et al. Water vapor retrievals from near-infrared channels of the advanced medium resolution spectral imager instrument onboard the Fengyun-3D satellite[J]. Advances in Atmospheric Sciences, 38, 1351-1366(2021).
[8] Yang F, Wang J Y, Wang H et al. Assessment of the water vapor tomography based on four navigation satellite systems and their various combinations[J]. Remote Sensing, 14, 3552(2022).
[9] Zhang W Y, Möller G, Zheng N et al. A new multi-resolution GNSS tomography method based on atmospheric water vapor distributions[J]. IEEE Transactions on Geoscience and Remote Sensing, 62, 4102314(2024).
[10] Grankov A G, Milshin A A, Novichikhin E P. Connection of cyclogenesis in the gulf of Mexico to the water vapor transport in the tropical Atlantic according to satellite microwave radiometers[J]. Russian Meteorology and Hydrology, 48, 666-671(2023).
[11] Meunier V, Turner D D, Kollias P. On the challenges of tomography retrievals of a 2D water vapor field using ground-based microwave radiometers: An observation system simulation experiment[J]. Journal of Atmospheric and Oceanic Technology, 32, 116-130(2015).
[12] Carroll B J, Nehrir A R, Kooi S A et al. Differential absorption lidar measurements of water vapor by the High Altitude Lidar Observatory (HALO): Retrieval framework and first results[J]. Atmospheric Measurement Techniques, 15, 605-626(2022).
[13] Mariani Z, Stanton N, Whiteway J et al. Toronto water vapor lidar inter-comparison campaign[J]. Remote Sensing, 12, 3165(2020).
[14] Yu J H, Cheng Y, Kong Z et al. Broadband continuous-wave differential absorption lidar for atmospheric remote sensing of water vapor[J]. Optics Express, 32, 3046-3061(2024).
[15] Liu B, Wu D C, Fan A Y et al. Development of a mobile Raman-Mie lidar system for all time water vapor and aerosol detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 112, 230-235(2011).
[16] Wulfmeyer V, Hardesty R M, Turner D D et al. A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles[J]. Reviews of Geophysics, 53, 819-895(2015).
[17] Liu D, Yao Q R, Zhang S N et al. Research progress of temperature, humidity and pressure detection technology using Raman lidar[J]. Chinese Optics, 16, 243-257(2023).
[18] Guo X Q, Wu D C, Wang Z Z et al. A review of atmospheric water vapor lidar calibration methods[J]. Wiley Interdisciplinary Reviews: Water, 11, e1712(2024).
[19] Wang Y F, Cao X M, Zhang J et al. Detection and analysis of all-day atmospheric water vapor Raman lidar based on wavelet denoising algorithm[J]. Acta Optica Sinica, 38, 0201001(2018).
[20] David L, Bock O, Thom C et al. Study and mitigation of calibration factor instabilities in a water vapor Raman lidar[J]. Atmospheric Measurement Techniques, 10, 2745-2758(2017).
[21] Whiteman D N, Russo F, Demoz B et al. Analysis of Raman lidar and radiosonde measurements from the AWEX-G field campaign and its relation to Aqua validation[J]. Journal of Geophysical Research: Atmospheres, 111, D09-09(2006).
[22] Dirksen R J, Sommer M, Immler F J et al. Reference quality upper-air measurements: GRUAN data processing for the vaisala RS92 radiosonde[J]. Atmospheric Measurement Techniques, 7, 4463-4490(2014).
[23] Leblanc T, McDermid I S, Walsh T D. Ground-based water vapor Raman lidar measurements up to the upper troposphere and lower stratosphere for long-term monitoring[J]. Atmospheric Measurement Techniques, 5, 17-36(2012).
[24] Hicks-Jalali S, Sica R J, Haefele A et al. Calibration of a water vapour Raman lidar using GRUAN-certified radiosondes and a new trajectory method[J]. Atmospheric Measurement Techniques, 12, 3699-3716(2019).
[25] Kulla B B, Ritter C. Water vapor calibration: Using a Raman lidar and radiosoundings to obtain highly resolved water vapor profiles[J]. Remote Sensing, 11, 616(2019).
[26] Totems J, Chazette P. Calibration of a water vapour Raman lidar with a kite-based humidity sensor[J]. Atmospheric Measurement Techniques, 9, 1083-1094(2016).
[27] Foth A, Baars H, Di Girolamo P et al. Water vapour profiles from Raman lidar automatically calibrated by microwave radiometer data during HOPE[J]. Atmospheric Chemistry and Physics, 15, 7753-7763(2015).
[28] Dai G Y, Althausen D, Hofer J et al. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data[J]. Atmospheric Measurement Techniques, 11, 2735-2748(2018).
[29] Vural J, Merker C, Löffler M et al. Improving the representation of the atmospheric boundary layer by direct assimilation of ground-based microwave radiometer observations[J]. Quarterly Journal of the Royal Meteorological Society, 150, 1012-1028(2024).
[30] Li X X, Dick G, Ge M R et al. Real‐time GPS sensing of atmospheric water vapor: Precise point positioning with orbit, clock, and phase delay corrections[J]. Geophysical Research Letters, 41, 3615-3621(2014).
[31] Li X X, Huang J X, Li X et al. Multi-constellation GNSS PPP instantaneous ambiguity resolution with precise atmospheric corrections augmentation[J]. GPS Solutions, 25, 107(2021).
[32] Vérèmes H, Payen G, Keckhut P et al. Validation of the water vapor profiles of the Raman lidar at the maïdo observatory(Reunion island) calibrated with global navigation satellite system integrated water vapor[J]. Atmosphere, 10, 713(2019).
[33] Walker M, Venable D, Whiteman D N. Gluing for Raman lidar systems using the lamp mapping technique[J]. Applied Optics, 53, 8535-8543(2014).
[34] Venable D D, Whiteman D N, Calhoun M N et al. Lamp mapping technique for independent determination of the water vapor mixing ratio calibration factor for a Raman lidar system[J]. Applied Optics, 50, 4622-4632(2011).
[35] Whiteman D N, Venable D, Landulfo E. Comments on "Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements"[J]. Applied Optics, 50, 2170-2176(2011).
[36] Zhao P T, Zhang Y C, Li W et al. Convenient method for calibrating system constant of scanning water vapor Raman lidar[J]. Chinese Optics Letters, 8, 541-545(2010).
[37] Dionisi D, Keckhut P, Courcoux Y et al. Water vapor observations up to the lower stratosphere through the Raman lidar during the Maïdo Lidar Calibration Campaign[J]. Atmospheric Measurement Techniques, 8, 1425-1445(2015).
[38] Dionisi D, Congeduti F, Liberti G L et al. Calibration of a multichannel water vapor Raman lidar through noncollocated operational soundings: Optimization and characterization of accuracy and variability[J]. Journal of Atmospheric and Oceanic Technology, 27, 108-121(2010).
[39] Yang F, Gao F, Zhang C G et al. Lateral scanning Raman scattering lidar for accurate measurement of atmospheric temperature and water vapor from ground to height of interest[J]. Optics Letters, 48, 2595-2598(2023).
[40] Wu D C, Wang Z E, Liu D et al. Independent calibration of water vapor Raman lidar by using additional elastic measurements at water vapor Raman wavelength[J]. EPJ Web of Conferences, 119, 25007(2016).
[41] Reichardt J, Behrendt O, Lauermann F. Spectrometric fluorescence and Raman lidar: Absolute calibration of aerosol fluorescence spectra and fluorescence correction of humidity measurements[J]. Atmospheric Measurement Techniques, 16, 1-13(2023).
[42] Veselovskii I, Hu Q Y, Goloub P et al. Derivation of depolarization ratios of aerosol fluorescence and water vapor Raman backscatters from lidar measurements[J]. Atmospheric Measurement Techniques, 17, 1023-1036(2024).
[43] Chouza F, Leblanc T, Brewer M et al. The impact of aerosol fluorescence on long-term water vapor monitoring by Raman lidar and evaluation of a potential correction method[J]. Atmospheric Measurement Techniques, 15, 4241-4256(2022).
[44] Cao K F, Hu S X, Wang Y J. Optimization of band-pass filtering parameters of a Raman lidar detecting atmospheric water vapor[J]. Journal of Optics, 14, 035503(2012).
[45] Bisson S E, Goldsmith J E, Mitchell M G. Narrow-band, narrow-field-of-view Raman lidar with combined day and night capability for tropospheric water-vapor profile measurements[J]. Applied Optics, 38, 1841-1849(1999).
[46] Mao J D, Hua D X, Wang Y F et al. Accurate temperature profiling of the atmospheric boundary layer using an ultraviolet rotational Raman lidar[J]. Optics Communications, 282, 3113-3118(2009).
[47] Whiteman D N, Rush K, Rabenhorst S et al. Airborne and ground-based measurements using a high-performance Raman lidar[J]. Journal of Atmospheric and Oceanic Technology, 27, 1781-1801(2010).
[48] Gao F, Stanic S, He T Y et al. Ultraviolet scanning Raman lidar with fast telescope for measurements of water vapor and aerosols in lower atmosphere[C], 8379, 360-365(2012).
[49] Veselovskii I, Whiteman D N, Korenskiy M et al. Use of rotational Raman measurements in multiwavelength aerosol lidar for evaluation of particle backscattering and extinction[J]. Atmospheric Measurement Techniques, 8, 4111-4122(2015).
[50] Tan M, Shang Z, Xie C et al. Raman lidar for the measurement of temperature, water vapor, and aerosol in Beijing in the winter of 2014[J]. Current Optics and Photonics, 2, 15-22(2018).
[51] Wang Y F, Fu Q, Zhao M N et al. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi'an[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 205, 114-126(2018).
[52] Tan M, Wang B X, Zhuang P et al. Study on atmospheric temperature and water-vapor mixing ratio based on Raman lidar[J]. Spectroscopy and Spectral Analysis, 40, 1397-1401(2020).
[53] Pan X L, Yi F, Liu F C et al. Diurnal temperature variations in the lower troposphere as measured by an all-day-operational pure rotational Raman lidar[J]. Applied Optics, 59, 8688-8696(2020).
[54] Totems J, Chazette P, Baron A. Mitigation of bias sources for atmospheric temperature and humidity in the mobile Raman weather and aerosol lidar (WALI)[J]. Atmospheric Measurement Techniques, 14, 7525-7544(2021).
[55] Li S C, Wang X, Zhang P H et al. Multi-channel pure rotational Raman spectroscopy system for all-sky absolute thermometry lidar[J]. Chinese Journal of Lasers, 49, 131-140(2022).
[56] Satyanarayana M, Radhakrishnan S R, Presennakumar B et al. High resolution Raman lidar for simultaneous measurement of temperature and water vapor in the lower atmosphere at a coastal station, Trivandrum[C], 6409, 121-129(2006).
[57] Wang H W, Hua D X, Wang Y F. Design and analysis of new spectroscopic system of Raman lidar for detection of atmospheric water vapor[J]. Acta Physica Sinica, 62, 120701(2013).
[58] Wang Y F, Zhang J, Tang L et al. Design and simulation analysis of spectroscopic system for synchronous atmospheric three-phase water detection based on Raman lidar[J]. Acta Physica Sinica, 67, 259-270(2018).
[59] Mashburn C, Borysow J. Raman spectrometer for high precision temperature sensing of atmospheric gases[J]. Applied Optics, 60, 2919-2925(2021).
[60] Kieft T, Mashburn C, Borysow J et al. A filter-based Raman spectrometer for non-invasive imaging of atmospheric water vapor[J]. Review of Scientific Instruments, 93, 035102(2022).
[61] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 15, 1263-1276(1997).
[62] De Young R J. A narrow band fiber Bragg grating filter for lidar receivers[C], 494-495(2001).
[63] Mao J D, Hua D X, Hu L L et al. Design of all-fiber Raman thermometry lidar spectroscopy system[J]. Acta Optica Sinica, 30, 7-13(2010).
[64] Li S C, Hua D X, Wang Y F et al. Fiber-optic spectroscopic rotational Raman lidar with visible wavelength fiber Bragg grating for atmospheric temperature measurement[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 153, 113-118(2015).
[65] Gong X, Hua D X, Li S C et al. Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating[J]. Acta Physica Sinica, 65, 073601(2016).
[66] Wang Y F, Jia L S, Li X X et al. Compact fiber-optic spectroscopic design and its validation in atmospheric water vapor Raman lidar[J]. Journal of the Optical Society of America B, 37, 941-948(2020).
[67] Gong X, Li H, Zhang R et al. Design of a water vapor spectroscopy system for Raman lidar based on sampled fiber Bragg grating[J]. Optics Continuum, 3, 1389-1399(2024).
[68] Arshinov Y, Bobrovnikov S, Serikov I et al. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J]. Applied Optics, 44, 3593-3603(2005).
[69] Wang Y F, Hua D X, Wang H W et al. Analysis of all-fiber Raman lidar system for water vapor by fiber Fabry-Perot filters[J]. Chinese Journal of Quantum Electronics, 30, 103(2013).
[70] Weng M, Yi F, Liu F C et al. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles[J]. Optics Express, 26, 27555-27571(2018).
[71] Melfi S H, Lawrence J, McCormick M P. Observation of Raman scattering by water vapor in the atmosphere[J]. Applied Physics Letters, 15, 295-297(1969).
[72] Hirschfeld T, Schildkraut E R, Tannenbaum H et al. Remote spectroscopic analysis of ppm-level air pollutants by Raman spectroscopy[J]. Applied Physics Letters, 22, 38-40(1973).
[73] Renaut D, Pourny J C, Capitini R. Daytime Raman-lidar measurements of water vapor[J]. Optics Letters, 5, 233-234(1980).
[74] Shi D C, Hua D X, Lei N et al. Research of solar-blind ultraviolet Raman lidar for water vapor measurement technology[J]. Spectroscopy and Spectral Analysis, 38, 1430-1436(2018).
[75] Yabuki M, Kawano Y, Tottori Y et al. A Raman lidar with a deep ultraviolet laser for continuous water vapor profiling in the atmospheric boundary layer[J]. EPJ Web of Conferences, 237, 03001(2020).
[76] Xie C B, Zhou J, Yue G M et al. New mobile Raman lidar for measurement of tropospheric water vapor[J]. Acta Optica Sinica, 26, 1281-1286(2006).
[77] Sakai T, Nagai T, Izumi T et al. Automated compact mobile Raman lidar for water vapor measurement: Instrument description and validation by comparison with radiosonde, GNSS, and high-resolution objective analysis[J]. Atmospheric Measurement Techniques, 12, 313-326(2019).
[78] Di Girolamo P, Franco N, Di Paolantonio M et al. Atmospheric thermodynamic profiling through the use of a micro-pulse Raman lidar system: Introducing the compact Raman lidar MARCO[J]. Sensors, 23, 8262(2023).
[79] Whiteman D N, Schwemmer G, Berkoff T et al. Performance modeling of an airborne Raman water-vapor lidar[J]. Applied Optics, 40, 375-390(2001).
[80] Liu B, Wang Z E, Cai Y et al. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds[J]. Optics Express, 22, 20613(2014).
[81] Di Girolamo P, Behrendt A, Wulfmeyer V. Space-borne profiling of atmospheric thermodynamic variables with Raman lidar: Performance simulations[J]. Optics Express, 26, 8125-8161(2018).
[82] Whiteman D N, Di Girolamo P, Behrendt A et al. Statistical analysis of simulated spaceborne thermodynamics lidar measurements in the planetary boundary layer[J]. Frontiers in Remote Sensing, 3, 810032(2022).
[83] Whiteman D N, Cadirola M, Venable D et al. Correction technique for Raman water vapor lidar signal-dependent bias and suitability for water vapor trend monitoring in the upper troposphere[J]. Atmospheric Measurement Techniques, 5, 2893-2916(2012).
[84] Kim D, Baik S, Cha H et al. Lidar measurement of a full Raman spectrum of water by using a multichannel detector[J]. Journal of the Korean Physical Society, 54, 38-43(2009).
[85] Wang Z F, Mao J D, Li J et al. Six-channel multi-wavelength polarization Raman lidar for aerosol and water vapor profiling[J]. Applied Optics, 56, 5620(2017).
[86] Park S H, Kim Y G, Kim D H et al. Selecting characteristic Raman wavelengths to distinguish liquid water, water vapor, and ice water[J]. Journal of the Optical Society of Korea, 14, 209-214(2010).
[87] Sica R J, Haefele A. Retrieval of water vapor mixing ratio from a multiple channel Raman-scatter lidar using an optimal estimation method[J]. Applied Optics, 55, 763-777(2016).
[88] Liu F, Yi F, He Y et al. Spectrally resolved Raman lidar to measure backscatter spectra of atmospheric three-phase water and fluorescent aerosols simultaneously: Instrument, methodology, and preliminary results[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 5703013(2022).
[89] Klanner L, Höveler K, Khordakova D et al. A powerful lidar system capable of 1 h measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere[J]. Atmospheric Measurement Techniques, 14, 531-555(2021).
[90] Froidevaux M, Higgins C W, Simeonov V et al. A Raman lidar to measure water vapor in the atmospheric boundary layer[J]. Advances in Water Resources, 51, 345-356(2013).
[91] Yang F, Gao F, Li X L et al. Study on the technology of continuous laser-based lateral Raman scattering lidar for blind-free detection of water vapor in the atmosphere[J]. Acta Optica Sinica, 44, 328-336(2024).
[92] Keckhut P, Courcoux Y, Baray J L et al. Introduction to the Maïdo Lidar Calibration Campaign dedicated to the validation of upper air meteorological parameters[J]. Journal of Applied Remote Sensing, 9, 094099(2015).
[93] Wu S H, Dai G Y, Song X Q et al. Observations of water vapor mixing ratio profile and flux in the Tibetan Plateau based on the lidar technique[J]. Atmospheric Measurement Techniques, 9, 1399-1413(2016).
[94] Lange D, Behrendt A, Wulfmeyer V. Compact operational tropospheric water vapor and temperature Raman lidar with turbulence resolution[J]. Geophysical Research Letters, 46, 14844-14853(2019).
Get Citation
Copy Citation Text
Xin GONG, Hui Li, Xiu Delong, Ruizhao Zhang, Jiandong Mao, Hu Zhao, Chunyan Zhou, Zhimin Rao. Review of Raman lidar atmospheric water vapor detection technology[J]. Journal of Atmospheric and Environmental Optics, 2025, 20(3): 245
Category: "Advanced technology of lidar and its application in atmospheric environment" Albun
Received: Dec. 24, 2024
Accepted: --
Published Online: Jun. 9, 2025
The Author Email: