Chinese Journal of Quantum Electronics, Volume. 42, Issue 4, 504(2025)
Measurement of detection system tilt and evaluation of tilt‐induced errors in atomic shear interferometer
[1] Peters A, Chung K Y, Chu S. Measurement of gravitational acceleration by dropping atoms[J]. Nature, 400, 849-852(1999).
[2] Hu Z K, Sun B L, Duan X C et al. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 88, 043610(2013).
[3] Huang P W, Tang B, Chen X et al. Accuracy and stability evaluation of the 85Rb atom gravimeter WAG-H5-1 at the 2017 International Comparison of Absolute Gravimeters[J]. Metrologia, 56, 045012(2019).
[4] Lyu W, Zhong J Q, Zhang X W et al. Compact high-resolution absolute-gravity gradiometer based on atom interferometers[J]. Physical Review Applied, 18, 054091(2022).
[5] Gustavson T L, Bouyer P, Kasevich M A. Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 78, 2046(1997).
[6] Canuel B, Leduc F, Holleville D et al. Six-axis inertial sensor using cold-atom interferometry[J]. Physical Review Letters, 97, 010402(2006).
[7] Yao Z W, Lu S B, Li R B et al. Continuous dynamic rotation measurements using a compact cold atom gyroscope[J]. Chinese Physics Letters, 33, 083701(2016).
[8] Morel L, Yao Z, Cladé P et al. Determination of the fine-structure constant with an accuracy of 81 parts per trillion[J]. Nature, 588, 61-65(2020).
[9] Parker R H, Yu C, Zhong W et al. Measurement of the fine-structure constant as a test of the Standard Model[J]. Science, 360, 191-195(2018).
[10] Fixler J B, Foster G T, McGuirk J M et al. Atom interferometer measurement of the Newtonian constant of gravity[J]. Science, 315, 74-77(2007).
[11] Rosi G, Sorrentino F, Cacciapuoti L et al. Precision measurement of the Newtonian gravitational constant using cold atoms[J]. Nature, 510, 518-521(2014).
[12] Tarallo M G, Mazzoni T, Poli N et al. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects[J]. Physical Review Letters, 113, 023005(2014).
[13] Fray S, Diez C A, Hänsch T W et al. Atomic interferometer with amplitude gratings of light and its applications to atom based tests of the equivalence principle.[J]. Physical Review Letters, 93, 240404(2004).
[14] Zhou L, Long S T, Tang B et al. Test of equivalence principle at 10-8 level by a dual-species double-diffraction Raman atom interferometer[J]. Physical Review Letters, 115, 013004(2015).
[15] Zhou L, He C, Yan S T et al. Joint mass-and-energy test of the equivalence principle at the 10-10 level using atoms with specified mass and internal energy[J]. Physical Review A, 104, 022822(2021).
[16] Jaffe M, Haslinger P, Xu V et al. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass[J]. Nature Physics, 13, 938-942(2017).
[17] Badurina L. Ultralight Dark Matter Phenomenology at Atom Interferometers[D](2023).
[18] Hamilton P, Jaffe M, Haslinger P et al. Atom-interferometry constraints on dark energy[J]. Science, 349, 849-851(2015).
[19] Long S T. Experimental Study on the Test of the Weak Equivalence Principle Based on the 85Rb-87Rb Dual-Component Cold Atom Interferometer[D](2017).
[20] He C. High-Precision Test of the Equivalence Principle Using an Atomic Interferometer[D](2021).
[21] Dickerson S M, Hogan J M, Sugarbaker A et al. Multiaxis inertial sensing with long-time point source atom interferometry[J]. Physical Review Letters, 111, 083001(2013).
[22] Canuel B, Bertoldi A, Amand L et al. Exploring gravity with the MIGA large scale atom interferometer[J]. Scientific Reports, 8, 14064(2018).
[23] Asenbaum P, Overstreet C, Kim M et al. Atom-interferometric test of the equivalence principle at the 10-12 level[J]. Physical Review Letters, 125, 191101(2020).
[24] Overstreet C, Asenbaum P, Curti J et al. Observation of a gravitational Aharonov-Bohm effect[J]. Science, 375, 226-229(2022).
[25] Hoth G W, Pelle B, Riedl S et al. Point source atom interferometry with a cloud of finite size[J]. Applied Physics Letters, 109, 071113(2016).
[26] Kwolek J M, Black A T. Continuous sub-Doppler-cooled atomic beam interferometer for inertial sensing[J]. Physical Review Applied, 17, 024061(2022).
[27] Yankelev D, Avinadav C, Davidson N et al. Atom interferometry with thousand-fold increase in dynamic range[J]. Science Advances, 6, eabd0650(2020).
[28] Yan S T, Jiang J J, Zhou L et al. Absolute-phase-shift measurement in a phase-shear-readout atom interferometer[J]. Physical Review A, 108, 063313(2023).
[29] Ge G G, Fang J, He M et al. Design of integrated optical system for high-precision cold atom interferometer[J]. Chinese Journal of Quantum Electronics, 41, 761-771(2024).
[30] Overstreet C. Atom-interferometric Test of the Equivalence Principle and Observation of a Quantum System in Curved Spacetime[D](2020).
[31] Goodman J W[M]. Introduction to Fourier Optics(2005).
[32] Huang B, Wang W, Bates M et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 319, 810-813(2008).
Get Citation
Copy Citation Text
Yuxuan PANG, Lu ZHOU, Sitong YAN, Junjie JIANG, Chuan HE, Rundong XU, Baocheng ZHANG, Lin ZHOU, Jin WANG, Mingsheng ZHAN. Measurement of detection system tilt and evaluation of tilt‐induced errors in atomic shear interferometer[J]. Chinese Journal of Quantum Electronics, 2025, 42(4): 504
Category: Special Issue on...
Received: Feb. 17, 2025
Accepted: --
Published Online: Jul. 31, 2025
The Author Email: Baocheng ZHANG (zhangbaocheng@cug.edu.cn), Lin ZHOU (lzhou@apm.ac.cn)