Laser & Optoelectronics Progress, Volume. 61, Issue 2, 0211005(2024)
Research Progress on Key Technologies of Chromatic Confocal Sensors (Invited)
[1] Molesini G, Pedrini G, Poggi P et al. Focus-wavelength encoded optical profilometer[J]. Optics Communications, 49, 229-233(1984).
[11] Cohen-Sabban J, Gaillard-Groleas J, Crepin P J. Extended-field confocal imaging for 3D surface sensing[J]. Proceedings of SPIE, 5252, 366-371(2004).
[12] Hillenbrand M, Mitschunas B, Wenzel C et al. Hybrid hyperchromats for chromatic confocal sensor systems[J]. Advanced Optical Technologies, 1, 187-194(2012).
[13] Miks A, Novak J, Novák P. Theory of hyperchromats with linear longitudinal chromatic aberration[J]. Proceedings of SPIE, 5945, 59450Y(2005).
[14] Novak J, Miks A. Hyperchromats with linear dependence of longitudinal chromatic aberration on wavelength[J]. Optik, 116, 165-168(2005).
[15] Miks A, Novak J, Novák P. Theory of chromatic sensor for topography measurements[J]. Proceedings of SPIE, 6609, 66090U(2007).
[16] Liu Q, Yang W C, Yuan D C et al. Design of dispersive objective for chromatic confocal displacement sensor[J]. Opto-Electronic Engineering, 38, 131-135(2011).
[17] Liu Q, Yang W C, Yuan D C et al. Optimization and selection of materials for dispersive objective of chromatic confocal microscope[J]. Opto-Electronic Engineering, 39, 111-117(2012).
[18] Liu Q, Yang W C, Yuan D C et al. Design of linear dispersive objective for chromatic confocal microscope[J]. Optics and Precision Engineering, 21, 2473-2479(2013).
[19] Liu Q, Wang Y, Yang W C et al. Chromatic confocal microscope with linear dispersive objective[J]. High Power Laser and Particle Beams, 26, 58-63(2014).
[20] Wang J N. Research and design of spectral confocal displacement sensor[D](2016).
[21] Cui C C, Li H, Yu Q et al. Design of adjustable dispersive objective lens for chromatic confocal system[J]. Optics and Precision Engineering, 25, 875-883(2017).
[22] Wang A S. Research on optical system for measuring three-dimensional surface topography based on spectral confocal principle[D](2018).
[23] Yang R, Yun Y, Xie B et al. Design of dispersive objective lens of large linear chromatic confocal 3D surface profiler[J]. High Power Laser and Particle Beams, 30, 051002(2018).
[24] Wang X J, Ma T. Chromatic confocal sensor with dual dispersion for extending the measuring range[J]. Proceedings of SPIE, 12072, 120720P(2021).
[25] Yang J, Ma T, Huang T T. Design of chromatic confocal quantitative inverse dispersive objective lens[J]. Proceedings of SPIE, 11763, 117638T(2021).
[26] Zhang Z L, Lu R S. Initial structure of dispersion objective for chromatic confocal sensor based on doublet lens[J]. Optics and Lasers in Engineering, 139, 106424(2021).
[27] Li C Y, Li K, Liu J H et al. Design of a confocal dispersion objective lens based on the GRIN lens[J]. Optics Express, 30, 44290-44299(2022).
[28] Wang Y L, Li J, Hou X et al. Review of chromatic confocal displacement measurement techniques based on diffractive dispersion[J]. Semiconductor Optoelectronics, 44, 1-7(2023).
[29] Dobson S L, Sun P C, Fainman Y. Diffractive lenses for chromatic confocal imaging[J]. Applied Optics, 36, 4744-4748(1997).
[30] Reyes J G, Meneses J, Plata A et al. Axial resolution of a chromatic dispersion confocal microscopy[J]. Proceedings of SPIE, 5622, 766-771(2004).
[31] Garzón R J, Meneses J, Tribillon G et al. Chromatic confocal microscopy by means of continuum light generated through a standard single-mode fibre[J]. Journal of Optics A: Pure and Applied Optics, 6, 544-548(2004).
[32] Duque D, Garzón J. Effects of both diffractive element and fiber optic based detector in a chromatic confocal system[J]. Optics & Laser Technology, 50, 182-189(2013).
[34] Ruprecht A K, Pruss C, Tiziani H J et al. Confocal micro-optical distance sensor: principle and design[J]. Proceedings of SPIE, 5856, 128-135(2005).
[35] Sinzinger S, Arrizon V, Jahns J. Confocal imaging with diffractive optics and broadband light sources[J]. Proceedings of SPIE, 3002, 186-189(1997).
[36] Deng N. Research on spectral confocal measurement system based on Fresnel lens[D](2022).
[37] Ning S M. Research on key technology of spectral confocal displacement measurement[D](2021).
[38] Liu T, Wang J Y, Liu Q et al. Chromatic confocal measurement method using a phase Fresnel zone plate[J]. Optics Express, 30, 2390-2401(2022).
[39] Berkovic G, Shafir E, Golub M A et al. Multi-wavelength fiber-optic confocal position sensor with diffractive optics for enhanced measurement range[J]. Proceedings of SPIE, 6619, 66190U(2007).
[40] Berkovic G, Shafir E, Golub M A et al. Multiple-fiber and multiple-wavelength confocal sensing with diffractive optical elements[J]. IEEE Sensors Journal, 8, 1089-1092(2008).
[41] Rayer M, Mansfield D. Chromatic confocal microscopy using staircase diffractive surface[J]. Applied Optics, 53, 5123-5130(2014).
[42] Förster E, Stumpf D et al. Hyperchromatic lens doublets with an extremely small equivalent Abbe number employing diffractive elements and refractive materials with exceptional dispersion properties[J]. Journal of the Optical Society of America A, 39, 1992-2000(2022).
[43] Hutley M C, Stevens R F. The use of a zone-plate monochromator as a displacement transducer[J]. Journal of Physics E: Scientific Instruments, 21, 1037-1044(1988).
[44] Kim T, Kim S H, Do D et al. Chromatic confocal microscopy with a novel wavelength detection method using transmittance[J]. Optics Express, 21, 6286-6294(2013).
[45] Park H M, Kwon U, Joo K N. Vision chromatic confocal sensor based on a geometrical phase lens[J]. Applied Optics, 60, 2898-2901(2021).
[46] Alfano R R, Shapiro S L. Emission in the region 4000 to 7000 Å via four-photon coupling in glass[J]. Physical Review Letters, 24, 584-587(1970).
[47] Shi K B, Li P, Yin S Z et al. Chromatic confocal microscopy using supercontinuum light[J]. Optics Express, 12, 2096-2101(2004).
[48] Shi K B, Nam S H, Li P et al. Wavelength division multiplexed confocal microscopy using supercontinuum[J]. Optics Communications, 263, 156-162(2006).
[49] Minoni U, Manili G, Bettoni S et al. Chromatic confocal setup for displacement measurement using a supercontinuum light source[J]. Optics & Laser Technology, 49, 91-94(2013).
[50] Chen X G, Nakamura T, Shimizu Y et al. A chromatic confocal probe with a mode-locked femtosecond laser source[J]. Optics & Laser Technology, 103, 359-366(2018).
[51] Jeong D, Park S J, Jang H et al. Swept-source-based chromatic confocal microscopy[J]. Sensors, 20, 7347(2020).
[58] Zhang Z L, Lu R S, Zhang A L et al. Monochromatic LED-based spectrally tunable light source for chromatic confocal sensors[J]. Optical Engineering, 62, 024102(2023).
[59] Luo D, Kuang C F, Liu X. Fiber-based chromatic confocal microscope with Gaussian fitting method[J]. Optics & Laser Technology, 44, 788-793(2012).
[60] Wu P Y. Research on design technology of spectral confocal displacement sensor[D](2012).
[61] Chen C, Yang W J, Wang J et al. Accurate and efficient height extraction in chromatic confocal microscopy using corrected fitting of the differential signal[J]. Precision Engineering, 56, 447-454(2019).
[62] Olsovsky C, Shelton R, Carrasco-Zevallos O et al. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue[J]. Biomedical Optics Express, 4, 732-740(2013).
[63] Gao X, Deng W Y, Niu C H. Research of displacement measurement system based on chromatic confocal[J]. Optical Technique, 38, 83-88(2012).
[64] Jin B S, Deng W Y, Niu C H et al. Design of dispersive lens group for chromatic confocal measuring system[J]. Optical Technique, 38, 660-664(2012).
[65] Wu Y Q. Development of spectral confocal displacement measurement system[D](2022).
[66] Bai J, Li X H, Wang X H et al. Chromatic confocal displacement sensor with optimized dispersion probe and modified centroid peak extraction algorithm[J]. Sensors, 19, 3592(2019).
[67] Bai J, Li X H, Zhou Q et al. Improved chromatic confocal displacement-sensor based on a spatial-bandpass-filter and an X-shaped fiber-coupler[J]. Optics Express, 27, 10961-10973(2019).
[68] Liu C M, Lu G Y, Liu C Y et al. Compact chromatic confocal sensor for displacement and thickness measurements[J]. Measurement Science and Technology, 34, 055104(2023).
[69] Chun B S, Kim K, Gweon D. Three-dimensional surface profile measurement using a beam scanning chromatic confocal microscope[J]. The Review of Scientific Instruments, 80, 073706(2009).
[70] Chen H R, Chen L C. Quasi-area-scan chromatic confocal microscopy for full-field surface profilometry with sub-micrometer accuracy[J]. SSRN Electronic Journal, 4147703(2022).
[71] Chen H R, Chen L C. Full-field chromatic confocal microscopy for surface profilometry with sub-micrometer accuracy[J]. Optics and Lasers in Engineering, 161, 107384(2023).
[72] Utter S B, Crespo López-Urrutia J R, Beiersdorfer P et al. Design and implementation of a high-resolution, high-efficiency optical spectrometer[J]. Review of Scientific Instruments, 73, 3737-3741(2002).
[73] Zeng C B, Han Y, Liu B et al. Optical design of a high-resolution spectrometer with a wide field of view[J]. Optics and Lasers in Engineering, 140, 106547(2021).
[74] Lee K S, Thompson K P, Rolland J P. Broadband astigmatism-corrected Czerny-Turner spectrometer[J]. Optics Express, 18, 23378-23384(2010).
[75] Xue Q S. Astigmatism-corrected Czerny-Turner imaging spectrometer for broadband spectral simultaneity[J]. Applied Optics, 50, 1338-1344(2011).
[76] Zhong X, Zhang Y, Jin G. High performance Czerny-Turner imaging spectrometer with aberrations corrected by tilted lenses[J]. Optics Communications, 338, 73-76(2015).
[77] Xia G, Qu B X, Liu P et al. Astigmatism-corrected miniature czerny-turner spectrometer with freeform cylindrical lens[J]. Chinese Optics Letters, 10, 081201(2012).
[78] Xia G, Wu S, Wang G D et al. Astigmatism-free Czerny-Turner compact spectrometer with cylindrical mirrors[J]. Applied Optics, 56, 9069-9073(2017).
[79] Feng Z W, Xia G, Zhang L et al. Advantages of multiple field of view spectrometer[J]. Optics and Lasers in Engineering, 160, 107308(2023).
[80] Wu S, Wang T, Huang C et al. Advanced optical design of Czerny-Turner spectrometer with high flux and low aberration in broadband[J]. Applied Optics, 61, 3077-3083(2022).
[81] Zhou Q, Zou Z Y. Astigmatism-free Czerny-Turner spectrometer with a low f-number by a bicylinder lens[J]. Applied Optics, 61, 7985-7990(2022).
[82] Feng Z W, Xia G, Lu R S et al. High-performance ultra-thin spectrometer optical design based on coddington’s equations[J]. Sensors, 21, 323(2021).
[83] Chen L C, Nguyen D T, Chang Y W. Precise optical surface profilometry using innovative chromatic differential confocal microscopy[J]. Optics Letters, 41, 5660-5663(2016).
[84] Chen C, Sato R, Shimizu Y et al. A method for expansion of Z-directional measurement range in a mode-locked femtosecond laser chromatic confocal probe[J]. Applied Sciences, 9, 454(2019).
[85] Sato R, Chen C, Matsukuma H et al. A new signal processing method for a differential chromatic confocal probe with a mode-locked femtosecond laser[J]. Measurement Science and Technology, 31, 094004(2020).
[86] Shi K B, Li P, Yin S Z et al. Surface profile measurement using chromatic confocal microscopy[J]. Proceedings of SPIE, 5606, 124-131(2004).
[87] Ruprecht A K, Wiesendanger T F, Tiziani H J. Signal evaluation for high-speed confocal measurements[J]. Applied Optics, 41, 7410-7415(2002).
[88] Tan J B, Liu C G, Liu J et al. Sinc2 fitting for height extraction in confocal scanning[J]. Measurement Science and Technology, 27, 025006(2016).
[89] Ćwikła M, Zakrzewski A, Koruba P et al. Preliminary design of longitudinal chromatic aberration sensor implemented to laser processing head[J]. Proceedings of SPIE, 11385, 1138502(2019).
[90] Bai J, Li X H, Wang X H et al. Self-reference dispersion correction for chromatic confocal displacement measurement[J]. Optics and Lasers in Engineering, 140, 106540(2021).
[91] Lu W L, Chen C, Zhu H et al. Fast and accurate mean-shift vector based wavelength extraction for chromatic confocal microscopy[J]. Measurement Science and Technology, 30, 115104(2019).
[92] Zhu H. Research on signal processing and calibration of spectral confocal displacement sensor[D](2019).
[93] Li C Y, Li G P, Liu J H et al. Analysis and research on spectral confocal displacement measurement method based on GRNN[J]. Acta Photonica Sinica, 51, 0330001(2022).
[94] Yuan Y, Liu T, Zhang L et al. FPGA-based detection module for the chromatic confocal measurement sensor[C], 178-181(2021).
[95] Lin P C, Sun P C, Zhu L J et al. Single-shot depth-section imaging through chromatic slit-scan confocal microscopy[J]. Applied Optics, 37, 6764-6770(1998).
[96] Ruprecht A K, Koerner K, Wiesendanger T F et al. Chromatic confocal detection for high-speed microtopography measurements[J]. Proceedings of SPIE, 5302, 53-60(2004).
[97] Chen L C, Chen C N, Chang Y W. Slit-scan multi-wavelength confocal lens module and slit-scan microscopic system and method using the same[P].
[98] Chen L C, Wu Y L, Chang Y W. Linear chromatic confocal microscopic system[P].
[99] Deng J W, Zhang Z Y, Chen F H et al. Chromatic confocal scanning apparatus[P].
[100] Hu H, Mei S, Fan L M et al. A line-scanning chromatic confocal sensor for three-dimensional profile measurement on highly reflective materials[J]. The Review of Scientific Instruments, 92, 053707(2021).
[101] Ito S, Poik M, Csencsics E et al. High-speed scanning chromatic confocal sensor for 3-D imaging with modeling-free learning control[J]. Applied Optics, 59, 9234-9242(2020).
[102] Aylward R P. Advanced galvanometer-based optical scanner design[J]. Sensor Review, 23, 216-222(2003).
[103] Wertjanz D, Kern T, Csencsics E et al. Compact scanning confocal chromatic sensor enabling precision 3-D measurements[J]. Applied Optics, 60, 7511-7517(2021).
[104] Hillenbrand M, Lorenz L, Kleindienst R et al. Spectrally multiplexed chromatic confocal multipoint sensing[J]. Optics Letters, 38, 4694-4697(2013).
[105] Tiziani H J, Uhde H M. Three-dimensional image sensing by chromatic confocal microscopy[J]. Applied Optics, 33, 1838-1843(1994).
[106] Tiziani H J, Uhde H M. Three-dimensional analysis by a microlens-array confocal arrangement[J]. Applied Optics, 33, 567-572(1994).
[107] Tiziani H J, Achi R, Kramer R N. Chromatic confocal microscopy with microlenses[J]. Journal of Modern Optics, 43, 155-163(1996).
[108] Tiziani H J, Wegner M, Steudle D. Confocal principle for macro- and microscopic surface and defect analysis[J]. Optical Engineering, 39, 32-39(2000).
[109] Fewer D T, Hewlett S J, McCabe E M et al. Direct-view microscopy: experimental investigation of the dependence of the optical sectioning characteristics on pinhole-array configuration[J]. Journal of Microscopy, 187, 54-61(1997).
[110] Jeong H J, Yoo H, Gweon D. High-speed 3-D measurement with a large field of view based on direct-view confocal microscope with an electrically tunable lens[J]. Optics Express, 24, 3806-3816(2016).
[111] Hillenbrand M, Grewe A, Bichra M et al. Chromatic information coding in optical systems for hyperspectral imaging and chromatic confocal sensing[J]. Proceedings of SPIE, 8550, 85500D(2012).
[112] McCabe E M, Fewer D T, Ottewill A C et al. Direct-view microscopy: optical sectioning strength for finite-sized, multiple-pinhole arrays[J]. Journal of Microscopy, 184, 95-105(1996).
[113] Hillenbrand M, Weiss R, Endrödy C et al. Chromatic confocal matrix sensor with actuated pinhole arrays[J]. Applied Optics, 54, 4927-4936(2015).
[114] Liang M H, Stehr R L, Krause A W. Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination[J]. Optics Letters, 22, 751-753(1997).
[115] Hanley Q S, Verveer P J, Gemkow M J et al. An optical sectioning programmable array microscope implemented with a digital micromirror device[J]. Journal of Microscopy, 196, 317-331(1999).
[116] Smith P J, Taylor C M, Shaw A J et al. Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator[J]. Applied Optics, 39, 2664-2669(2000).
[117] Cha S, Lin P C, Zhu L J et al. Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning[J]. Applied Optics, 39, 2605-2613(2000).
[118] Luo D, Taphanel M, Claus D et al. Area scanning method for 3D surface profilometry based on an adaptive confocal microscope[J]. Optics and Lasers in Engineering, 124, 105819(2020).
[119] Cui Q, Liang R G. Chromatic confocal microscopy using liquid crystal display panels[J]. Applied Optics, 58, 2085-2090(2019).
[120] Chen L C, Li H W, Chang Y W. Full-field chromatic confocal surface profilometry employing DMD correspondence for minimizing lateral cross talks[J]. Proceedings of SPIE, 8321, 832120(2011).
[121] Chen L C. Full-field chromatic confocal surface profilometry employing digital micromirror device correspondence for minimizing lateral cross talks[J]. Optical Engineering, 51, 081507(2012).
[122] Chen L C, Tan P J, Wu G W et al. High-speed chromatic confocal microscopy using multispectral sensors for sub-micrometer-precision microscopic surface profilometry[J]. Measurement: Sensors, 18, 100165(2021).
[123] Stelzer E H K, Lindek S. Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy[J]. Optics Communications, 111, 536-547(1994).
[124] Wang D, Chen Y, Wang Y et al. Comparison of line-scanned and point-scanned dual-axis confocal microscope performance[J]. Optics Letters, 38, 5280-5283(2013).
[127] Taphanel M, Beyerer J. Fast 3D in-line sensor for specular and diffuse surfaces combining the chromatic confocal and triangulation principle[C], 1072-1077(2012).
[128] Taphanel M, Zink R, Längle T et al. Multiplex acquisition approach for high speed 3D measurements with a chromatic confocal microscope[J]. Proceedings of SPIE, 9525, 95250Y(2015).
[129] Yu Q, Zhang Y L, Shang W J et al. Thickness measurement for glass slides based on chromatic confocal microscopy with inclined illumination[J]. Photonics, 8, 170(2021).
[130] Yu Q, Wang C, Zhang Y L et al. Error analysis and correction of thickness measurement for transparent specimens based on chromatic confocal microscopy with inclined illumination[J]. Photonics, 9, 155(2022).
[131] Zhang Y L, Yu Q, Wang C et al. Design and research of chromatic confocal system for parallel non-coaxial illumination based on optical fiber bundle[J]. Sensors, 22, 9596(2022).
[132] Hillenbrand M, Grewe A, Bichra M et al. Parallelized chromatic confocal sensor systems[J]. Proceedings of SPIE, 8788, 87880V(2013).
[133] Li S B, Song B F, Peterson T et al. MicroLED chromatic confocal microscope[J]. Optics Letters, 46, 2722-2725(2021).
[134] Li S B, Liang R G. DMD-based three-dimensional chromatic confocal microscopy[J]. Applied Optics, 59, 4349-4356(2020).
Get Citation
Copy Citation Text
Rongsheng Lu, Zilong Zhang, Ailin Zhang, Zhiwei Feng, Yan Xu, Liujie Yang. Research Progress on Key Technologies of Chromatic Confocal Sensors (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(2): 0211005
Category: Imaging Systems
Received: Dec. 7, 2023
Accepted: Dec. 21, 2023
Published Online: Feb. 6, 2024
The Author Email: Rongsheng Lu (rslu@hfut.edu.cn)
CSTR:32186.14.LOP232639