Chinese Journal of Lasers, Volume. 49, Issue 2, 0202301(2022)
Effect of Carbon Nanotubes Content on Microstructure and Properties of Laser Cladded Ni-Based Composite Coating
[1] Chen J F, Li X P, Xue Y P. Friction and wear properties of laser cladding Fe901 alloy coating on 45 steel surface[J]. Chinese Journal of Lasers, 46, 0502001(2019).
[2] Sun N, Fang Y, Zhang J Q et al. Effect of WC-12Co addition on microstructure and wear resistance of Inconel 625 matrix composites prepared by laser cladding[J]. Chinese Journal of Lasers, 48, 0602106(2021).
[3] Hu D W, Liu Y, Chen H et al. Microstructure and properties of laser cladding Ni-based WC coating on Q960E steel[J]. Chinese Journal of Lasers, 48, 0602120(2021).
[4] Jiang G Y, Xie J L, Pang M et al. Microstructure and properties of Ni-based WC alloy by laser cladding of compacted graphite cast iron[J]. Laser & Optoelectronics Progress, 57, 151404(2020).
[5] Zhang M Y, Li M, Chi J et al. Effect of Ti on microstructure characteristics, carbide precipitation mechanism and tribological behavior of different WC types reinforced Ni-based gradient coating[J]. Surface and Coatings Technology, 374, 645-655(2019).
[6] Song X L, Lei J B, Xie J C et al. Microstructure and electrochemical corrosion properties of nickel-plated carbon nanotubes composite Inconel718 alloy coatings by laser melting deposition[J]. Optics & Laser Technology, 119, 105593(2019).
[7] Wang L Z, Chen T, Wang S. Microstructural characteristics and mechanical properties of carbon nanotube reinforced AlSi10Mg composites fabricated by selective laser melting[J]. Optik, 143, 173-179(2017).
[8] Vasanthakumar K, Karthiselva N S, Chawake N M et al. Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures[J]. Journal of Alloys and Compounds, 709, 829-841(2017).
[9] Radhamani A V, Lau H C, Kamaraj M et al. Structural, mechanical and tribological investigations of CNT-316 stainless steel nanocomposites processed via spark plasma sintering[J]. Tribology International, 152, 106524(2020).
[10] Pascu A, Stanciu E M, Croitoru C et al. Pulsed laser cladding of NiCrBSiFeC hardcoatings using single-walled carbon nanotube additives[J]. Journal of Nanomaterials, 2019, 1-12(2019).
[11] Ye Z Y, Li J N, Liu L Q et al. Microstructure and wear performance enhancement of carbon nanotubes reinforced composite coatings fabricated by laser cladding on titanium alloy[J]. Optics & Laser Technology, 139, 106957(2021).
[12] Wang J Y. Investigation on electromagnetic wave absorbing properties of the carbon nanotubes[D](2005).
[13] Zhuang J, Gu D D, Xi L X et al. Preparation method and underlying mechanism of MWCNTs/Ti6Al4V nanocomposite powder for selective laser melting additive manufacturing[J]. Powder Technology, 368, 59-69(2020).
[14] Wang X Y, Zhou S F, Dai X Q et al. Evaluation and mechanisms on heat damage of WC particles in Ni60/WC composite coatings by laser induction hybrid cladding[J]. International Journal of Refractory Metals and Hard Materials, 64, 234-241(2017).
[15] Li D Y, Cui X F, Yuan C F et al. Effect of Ni modified graphene on microstructure and properties of Ni60 composite coatings prepared by laser cladding[J]. Optics & Laser Technology, 136, 106756(2021).
[16] Hu D W, Liu Y, Chen H et al. Microstructure and wear resistance of Ni-based tungsten carbide coating by laser cladding on tunnel boring machine cutter ring[J]. Surface and Coatings Technology, 404, 126432(2020).
[17] Li M Y, Zhang Q, Han B et al. Microstructure and property of Ni/WC/La2O3 coatings by ultrasonic vibration-assisted laser cladding treatment[J]. Optics and Lasers in Engineering, 125, 105848(2020).
[18] Li F Q, Feng X Y, Chen Y B. Influence of WC content on microstructure of WC/Ni60A laser cladding layer[J]. Chinese Journal of Lasers, 43, 0403009(2016).
[19] Zhou S W, Xu T, Hu C et al. A comparative study of tungsten carbide and carbon nanotubes reinforced Inconel 625 composite coatings fabricated by laser cladding[J]. Optics & Laser Technology, 140, 106967(2021).
[20] Zhang B C, Bi G J, Chew Y et al. Comparison of carbon-based reinforcement on laser aided additive manufacturing Inconel 625 composites[J]. Applied Surface Science, 490, 522-534(2019).
[21] Huang X, Zhang J C, Cheng Y et al. Effect of h-BN addition on the microstructure characteristics, residual stress and tribological behavior of WC-reinforced Ni-based composite coatings[J]. Surface and Coatings Technology, 405, 126534(2021).
[22] Zhou J Z, He W Y, Xu J L et al. Strengthening mechanism and wear resistance of Al2O3/Fe901 composite coating prepared by laser cladding[J]. Acta Optica Sinica, 39, 0514001(2019).
[23] Shu D, Cui X X, Li Z G et al. Microstructure and friction and wear property of nano-WC reinforced Ni-based coating[J]. Laser & Optoelectronics Progress, 57, 211401(2020).
[24] Wang X J, Yan Y L. Microstructure and properties of laser cladding 316L stainless steel coating assisted by magnetic field[J]. Laser & Optoelectronics Progress, 57, 231401(2020).
[25] Zhang R, Ren F, Yang Y F et al. High-temperature oxidation characteristics of Al2O3/CoNiCrAlY coating obtained via laser cladding[J]. Laser & Optoelectronics Progress, 57, 171408(2020).
Get Citation
Copy Citation Text
Jiacheng Zhang, Jibin Jiang, Xu Huang, Guofu Lian, Changrong Chen, Meiyan Feng, Mengning Zhou. Effect of Carbon Nanotubes Content on Microstructure and Properties of Laser Cladded Ni-Based Composite Coating[J]. Chinese Journal of Lasers, 2022, 49(2): 0202301
Category:
Received: Jun. 28, 2021
Accepted: Aug. 3, 2021
Published Online: Dec. 1, 2021
The Author Email: Huang Xu (huangxu@fjut.edu.cn)