Photonics Research, Volume. 10, Issue 8, 1900(2022)
Imaging ultrafast evolution of subwavelength-sized topography using single-probe structured light microscopy
[1] P. Tengdin, W. You, C. Chen, X. Shi, D. Zusin, Y. Zhang, C. Gentry, A. Blonsky, M. Keller, P. M. Oppeneer. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel. Sci. Adv., 4, eaap9744(2018).
[2] P. Q. Elias, N. Severac, J. M. Luyssen, Y. B. André, I. Doudet, B. Wattellier, J. P. Tobeli, S. Albert, B. Mahieu. Improving supersonic flights with femtosecond laser filamentation. Sci. Adv., 4, eaau5239(2018).
[3] K. Pande, C. D. M. Hutchison, G. Groenhof, A. Aquila, J. S. Robinson, J. Tenboer, S. Basu, S. Boutet, D. P. DePonte, M. Liang. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Science, 352, 725-729(2016).
[4] A. Y. Vorobyev, C. Guo. Femtosecond laser nanostructuring of metals. Opt. Express, 14, 2164-2169(2006).
[5] Z. Lin, L. Ji, M. Hong. Enhancement of femtosecond laser-induced surface ablation via temporal overlapping double-pulse irradiation. Photon. Res., 8, 271-278(2020).
[6] J. Boisvert, A. Hlil, S. Loranger, A. Riaz, Y. Ledemi, Y. Messaddeq, K. Raman. Photosensitization agents for fs laser writing in PDMS. Sci. Rep., 12, 1623(2022).
[7] G. González-Rubio, P. Díaz-Núñez, A. Rivera, A. Prada, G. Tardajos, J. González-Izquierdo, L. Bañares, P. Llombart, L. G. Macdowell, M. A. Palafox. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science, 358, 640-644(2017).
[8] N. Zhang, X. Zhu, J. Yang, X. Wang, M. Wang. Time-resolved shadowgraphs of material ejection in intense femtosecond laser ablation of aluminum. Phys. Rev. Lett., 99, 167602(2007).
[9] P. Ding, Y. Yao, D. Qi, C. Yang, F. Cao, Y. He, J. Yao, C. Jin, Z. Huang, L. Deng. Single-shot spectral-volumetric compressed ultrafast photography. Adv. Photon., 3, 045001(2021).
[10] Y. Yao, Y. He, D. Qi, F. Cao, J. Yao, P. Ding, C. Jin, X. Wu, L. Deng, T. Jia. Single-shot real-time ultrafast imaging of femtosecond laser fabrication. ACS Photon., 8, 738-744(2021).
[11] X. Zeng, S. Zheng, Y. Cai, Q. Lin, J. Liang, X. Lu, J. Li, W. Xie, S. Xu. High-spatial-resolution ultrafast framing imaging at 15 trillion frames per second by optical parametric amplification. Adv. Photon., 2, 056002(2020).
[12] V. Kravtsov, R. Ulbricht, J. M. Atkin, M. B. Raschke. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat. Nanotechnol., 11, 459-464(2016).
[13] G. Spektor, D. Kilbane, A. K. Mahro, B. Frank, S. Ristok, L. Gal, P. Kahl, D. Podbiel, S. Mathias, H. Giessen. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices. Science, 355, 1187-1191(2017).
[14] M. C. Fischer, J. W. Wilson, F. E. Robles, W. S. Warren. Invited review article: pump-probe microscopy. Rev. Sci. Instrum., 87, 031101(2016).
[15] P. Dong, J. Cheng. Pump–probe microscopy: theory, instrumentation, and applications. Spectroscopy, 32, 2-11(2017).
[16] M. Domke, S. Rapp, M. Schmidt, H. P. Huber. Ultrafast pump-probe microscopy with high temporal dynamic range. Opt. Express, 20, 10330-10338(2012).
[17] J. Yu, W. S. Warren, M. C. Fischer. Visualization of vermilion degradation using pump-probe microscopy. Sci. Adv., 5, eaaw3136(2019).
[18] Y. Yu, X. Zhang, Z. Zhou, Z. Zhang, Y. Bao, H. Xu, L. Lin, Y. Zhang, X. Wang. Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides. Photon. Res., 7, 711-721(2019).
[19] Y. Tan, H. Zhao, R. Zhang, Y. Zhao, C. Zhang, X. Zhang, L. Zhang. Transient evolution of quasifree electrons of plasma in liquid water revealed by optical-pump terahertz-probe spectroscopy. Adv. Photon., 3, 015002(2021).
[20] J. Bonse, G. Bachelier, J. Siegel, J. Solis. Time-and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germanium. Phys. Rev. B, 74, 134106(2006).
[21] R. Fang, A. Vorobyev, C. Guo. Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals. Light Sci. Appl., 6, e16256(2017).
[22] C. Pan, L. Jiang, J. Sun, Q. Wang, F. Wang, K. Wang, Y. Lu, Y. Wang, L. Qu, T. Cui. Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation. Light Sci. Appl., 9, 80(2020).
[23] T. Pflug, M. Olbrich, J. Winter, J. Schille, U. Löschner, H. Huber, A. Horn. Fluence-dependent transient reflectance of stainless steel investigated by ultrafast imaging pump–probe reflectometry. J. Phys. Chem. C, 125, 17363-17371(2021).
[24] T. Feng, G. Chen, H. Han, J. Qiao. Femtosecond-laser-ablation dynamics in silicon revealed by transient reflectivity change. Micromachines, 13, 14(2022).
[25] E. S. Massaro, A. H. Hill, E. M. Grumstrup. Super-resolution structured pump–probe microscopy. ACS Photon., 3, 501-506(2016).
[26] Y. Kim, P. T. C. So. Three-dimensional wide-field pump-probe structured illumination microscopy. Opt. Express, 25, 7369-7391(2017).
[27] M. A. A. Neil, R. Juškaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).
[28] C. Wang, K. Lee, C. Lee. Wide-field optical nanoprofilometry using structured illumination. Opt. Lett., 34, 3538-3540(2009).
[29] D. Dan, B. Yao, M. Lei. Structured illumination microscopy for super-resolution and optical sectioning. Chin. Sci. Bull., 59, 1291-1307(2014).
[30] T. Zhao, Z. Wang, T. Chen, M. Lei, B. Yao, P. R. Bianco. Advances in high-speed structured illumination microscopy. Front. Phys., 9, 672555(2021).
[31] P. Kner, B. B. Chhun, E. R. Griffis, L. Winoto, M. G. L. Gustafsson. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods, 6, 339-342(2009).
[32] C. Ling, C. Zhang, M. Wang, F. Meng, L. Du, X. Yuan. Fast structured illumination microscopy via deep learning. Photon. Res., 8, 1350-1359(2020).
[33] X. Su, Q. Zhang. Dynamic 3-D shape measurement method: a review. Opt. Laser Eng., 48, 191-204(2010).
[34] X. Su, W. Chen. Fourier transform profilometry: a review. Opt. Laser Eng., 35, 263-284(2001).
[35] M. Takeda, K. Mutoh. Fourier transform profilometry for the automatic measurement of 3-D object shapes. Appl. Opt., 22, 3977-3982(1983).
[36] L. Chen, X. Nguyen, F. Zhang, T. Lin. High-speed Fourier transform profilometry for reconstructing objects having arbitrary surface colours. J. Opt., 12, 095502(2010).
[37] T. Tao, Q. Chen, J. Da, S. Feng, Y. Hu, C. Zuo. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system. Opt. Express, 24, 20253-20269(2016).
[38] P. Yao, S. Gai, Y. Chen, W. Chen, F. Da. A multi-code 3D measurement technique based on deep learning. Opt. Laser Eng., 143, 106623(2021).
[39] F. Chen, G. M. Brown, M. Song. Overview of 3-D shape measurement using optical methods. Opt. Eng., 39, 10-22(2000).
[40] J. Liu, X. Jia, W. Wu, K. Cheng, D. Feng, S. Zhang, Z. Sun, T. Jia. Ultrafast imaging on the formation of periodic ripples on a Si surface with a prefabricated nanogroove induced by a single femtosecond laser pulse. Opt. Express, 26, 6302-6315(2018).
[41] M. Kolesik, J. Brown, A. Bahl. Modeling of ultrafast laser pulse propagation. Proc. SPIE, 9835, 983510(2016).
[42] A. M. Weiner. Ultrafast optical pulse shaping: a tutorial review. Opt. Commun., 284, 3669-3692(2011).
[43] A. M. Weiner. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum., 71, 1929-1960(2000).
[44] T. H. Dou, R. Tautz, X. Gu, G. Marcus, T. Feurer, F. Krausz, L. Veisz. Dispersion control with reflection grisms of an ultra-broadband spectrum approaching a full octave. Opt. Express, 18, 27900-27909(2010).
[45] M. C. Downer, R. L. Fork, C. V. Shank. Femtosecond imaging of melting and evaporation at a photoexcited silicon surface. J. Opt. Soc. Am. B, 2, 595-599(1985).
[46] R. Gunnella, G. Zgrablic, E. Giangrisostomi, F. D’Amico, E. Principi, C. Masciovecchio, A. Di Cicco, F. Parmigiani. Ultrafast reflectivity dynamics of highly excited Si surfaces below the melting transition. Phys. Rev. B, 94, 155427(2016).
[47] S. He, J. J. J. Nivas, K. K. Anoop, A. Vecchione, M. Hu, R. Bruzzese, S. Amoruso. Surface structures induced by ultrashort laser pulses: formation mechanisms of ripples and grooves. Appl. Surf. Sci., 353, 1214-1222(2015).
[48] A. V. Dostovalov, K. A. Okotrub, K. A. Bronnikov, V. S. Terentyev, V. P. Korolkov, S. A. Babin. Influence of femtosecond laser pulse repetition rate on thermochemical laser-induced periodic surface structures formation by focused astigmatic Gaussian beam. Laser Phys. Lett., 16, 026003(2019).
[49] Y. Fuentes-Edfuf, J. A. Sanchez-Gil, C. Florian, V. Giannini, J. Solis, J. Siegel. Surface plasmon polaritons on rough metal surfaces: role in the formation of laser-induced periodic surface structures. ACS Omega, 4, 6939-6946(2019).
[50] Y. Zhang, Q. Jiang, K. Cao, T. Chen, K. Cheng, S. Zhang, D. Feng, T. Jia, Z. Sun, J. Qiu. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser. Photon. Res., 9, 839-847(2021).
[51] E. Skoulas, A. C. Tasolamprou, G. Kenanakis, E. Stratakis. Laser induced periodic surface structures as polarizing optical elements. Appl. Surf. Sci., 541, 148470(2021).
[52] S. Lechago, C. García-Meca, A. Griol, M. Kovylina, L. Bellieres, J. Martí. All-silicon on-chip optical nanoantennas as efficient interfaces for plasmonic devices. ACS Photon., 6, 1094-1099(2019).
[53] C. Florian, S. V. Kirner, J. Krüger, J. Bonse. Surface functionalization by laser-induced periodic surface structures. J. Laser Appl., 32, 022063(2020).
[54] A. Y. Vorobyev, C. Guo. Multifunctional surfaces produced by femtosecond laser pulses. J. Appl. Phys., 117, 033103(2015).
Get Citation
Copy Citation Text
Jie Xu, Changjun Min, Yuquan Zhang, Jielei Ni, Gengwei Cao, Qianyi Wei, Jianjun Yang, Xiaocong Yuan, "Imaging ultrafast evolution of subwavelength-sized topography using single-probe structured light microscopy," Photonics Res. 10, 1900 (2022)
Category: Imaging Systems, Microscopy, and Displays
Received: Mar. 17, 2022
Accepted: Jun. 21, 2022
Published Online: Jul. 27, 2022
The Author Email: Changjun Min (cjmin@szu.edu.cn), Yuquan Zhang (yqzhang@szu.edu.cn), Xiaocong Yuan (xcyuan@szu.edu.cn)