Journal of Advanced Dielectrics, Volume. 11, Issue 1, 2150004(2021)
Ultralow switching voltage and power consumption of GeS2 thin film resistive switching memory
[1] H.-Y. Chenet?al. Resistive random access memory (RRAM) technology: From material, device, selector, 3D integration to bottom-up fabrication. J. Electroceram., 39, 21(2017).
[2] M. Lanzaet?al. Recommended methods to study resistive switching devices. Adv. Electron. Mater., 5, 1800143(2019).
[3] D. Kuzum, S. Yu, H.-S. Philip Wong. Synaptic electronics: Materials, devices and applications. Nanotechnology, 24, 382001(2013).
[4] I. Valovet?al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun., 4, 1771(2013).
[5] X. Honget?al. Oxide-based RRAM materials for neuromorphic computing. J. Mater. Sci., 53, 8720(2018).
[6] J. R. Jamesonet?al. (Invited) Conductive Bridging RAM (CBRAM): Then, now, and tomorrow. ECS Trans., 75, 41(2016).
[7] I. Valov. Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs). Semicond. Sci. Technol., 32, 093006(2017).
[8] H.-S. P. Wonget?al. Metal–oxide RRAM. Proc. IEEE, 100, 1951(2012).
[9] T. Ohnoet?al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater., 10, 591(2011).
[12] F. Longnoset?al. On the impact of Ag doping on performance and reliability of GeS2-based conductive bridge memories. Solid-State Electron., 84, 155(2013).
[13] G. Palmaet?al. Interface engineering of Ag-GeS2-based conductive bridge RAM for reconfigurable logic applications. IEEE Trans. Electron Devices, 61, 793(2014).
[14] Y. Murakami, M. Wakaki. Observation of Ag photodoping phenomena in GeS2 chalcogenide glass films by spectroscopic ellipsometry and atomic force microscopy. Thin Solid Films, 542, 246(2013).
[15] M. Mitkova, M. N. Kozicki. Silver incorporation in Ge–Se glasses used in programmable metallization cell devices. J. Non-Crystalline Solids, 299–302, 1023(2002).
[16] H. Horton, K. L. Peatt, R. M. Lambert. Surface photo-oxidation and Ag deposition on amorphous GeS2. J. Phys.: Condens. Matter, 5, 9037(1993).
[17] S. I. Sadovnikov, E. Yu. Gerasimov. Direct TEM observation of the “acanthite α-Ag 2 S–argentite β-Ag2 S” phase transition in a silver sulfide nanoparticle. Nanoscale Adv., 1, 1581(2019).
[18] J. Lee, W. D. Lu. On-demand reconfiguration of nanomaterials: When electronics meets ionics. Adv. Mater., 30, 1702770(2018).
[19] F. Panet?al. Nonvolatile resistive switching memories-characteristics, mechanisms and challenges. Prog. Nat. Sci.: Mater. Int., 20, 1(2010).
[20] R. Waser, R. Dittmann, G. Staikov, K. Szot. Redox-based resistive switching memories - Nanoionic mechanisms, prospects, and challenges. Adv. Mater., 21, 2632(2009).
[21] K. Onlaor, T. Thiwawong, B. Tunhoo. Electrical switching and conduction mechanisms of nonvolatile write-once-read-many-times memory devices with ZnO nanoparticles embedded in polyvinylpyrrolidone. Org. Electron., 15, 1254(2014).
[22] J. van den Hurk, V. Havel, E. Linn, R. Waser, I. Valov. Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/Nanoelectronic logic and memory architectures. Sci. Rep., 3, 2856(2013).
[23] E. Linn, S. Menzel, S. Ferch, R. Waser. Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications. Nanotechnology, 24, 384008(2013).
[24] E. Linn, R. Rosezin, C. Kügeler, R. Waser. Complementary resistive switches for passive nanocrossbar memories. Nat. Mater., 9, 403(2010).
Get Citation
Copy Citation Text
N. Lyapunov, C. H. Suen, C. M. Wong, Xiaodan Tang, Z. L. Ho, K. Zhou, X. X. Chen, H. M. Liu, Xiaoyuan Zhou, J. Y. Dai. Ultralow switching voltage and power consumption of GeS2 thin film resistive switching memory[J]. Journal of Advanced Dielectrics, 2021, 11(1): 2150004
Category: Research Articles
Received: Jul. 21, 2020
Accepted: Jan. 19, 2021
Published Online: Nov. 1, 2022
The Author Email: Zhou Xiaoyuan (xiaoyuan2013@cqu.edu.cn), Dai J. Y. (jiyan.dai@polyu.edu.hk)