Journal of Inorganic Materials, Volume. 34, Issue 4, 349(2019)
[1] GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective[J]. Am. Chem. Soc, 135, 1167-1176(2013).
[2] TAN Y, XUE B. Research progress on lithium titanate as anode material in lithium-ion battery[J]. Inorg. Mater, 33, 475-482(2018).
[3] LUO W, CHEN X, XIA Y et al. Surface and interface engineering of silicon-based anode materials for lithium-ion batteries. Adv. Energy Mater[D], 7(2017).
[4] XIAO Q Z, FAN Y, WANG X H et al. A multilayer Si/CNT coaxial nano fiber LiB anode with a high areal capacity[D]. Energy Environ. Sci, 7, 655-661(2014).
[5] HUANG S, FAN F, LI J et al. Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries[D]. Acta Mater, 61, 4354-4364(2013).
[6] LI J, DAHN J R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si[J]. Electrochem. Soc, 154, A156-A161(2007).
[7] WANG F, WU L J, KEY B et al. Electrochemical reaction of lithium with nanostructure silicon anodes: a study by in-situ synchrotron X-ray diffraction and electron energy-loss spectroscopy[D]. Adv. Energy Mater, 3, 1324-1331(2013).
[8] OBROVAC M N, KRAUSE L J. Reversible cycling of crystalline silicon powder[J]. Electrochem. Soc, 154, A103-A108(2007).
[9] DING N, XU J, YAO Y X et al. Improvement of cyclability of Si as anode for Li-ion batteries[J]. Power Sources, 192, 644-651(2009).
[10] SETHURAMAN V A, CHON M J, SHIMSHAK M et al. In situ, measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation[J]. Power Sources, 195, 5062-5066(2012).
[11] NADIMPALLI S P V, SETHURAMAN V A, BUCCI G et al. On plastic deformation and fracture in Si films during electrochemical lithiation/delithiation cycling[J]. Electrochem. Soc, 160, A1885-A1893(2013).
[12] GHASSEMI H, MING A, CHEN N et al. In situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods[D]. ACS Nano, 5, 7805-7811(2011).
[13] LIANG B, LIU Y, XU Y. Silicon-based materials as high capacity anodes for next generation lithium ion batteries[J]. Power Sources, 267, 469-490(2014).
[14] WEN Z S, WANG K, XIE J Y. Interface formed on high capacity silicon anode for lithium ion batteries[J]. Inorg. Mater, 22, 437-441(2007).
[15] CHAN C K, RUFFO R, HONG S et al. Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes[J]. Power Sources, 189, 1132-1140(2009).
[16] KEY B, BHATTACHARYYA R, MORCRETTE M et al. Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries[J]. Am. Chem. Soc, 131, 9239-9249(2009).
[17] JI H R, KIM J W, SUNG Y E et al. Failure modes of silicon powder negative electrode in lithium secondary batteries[D]. Electrochem. Solid-State Lett, 7, A306-A309(2004).
[18] HONG L, HUANG X, CHEN L et al. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature[D]. Solid State Ionics, 135, 181-191(2000).
[19] LIANG J W, LI X N, ZHU Y C et al. Hydrothermal synthesis of nano-silicon from a silica sol and its use in lithium ion batteries[D]. Nano Res, 8, 1497-1504(2015).
[20] KIM W S, CHOI J, HONG S H. Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery[D]. Nano Lett, 9, 2174-2181(2016).
[21] ZHOU Y N, XUE M Z, FU Z W. Nanostructured thin film electrodes for lithium storage and all-solid-state thin-film lithium batteries[J]. Power Sources, 234, 310-332(2013).
[22] DATTA M K, MARANCHI J, CHUNG S J et al. Amorphous silicon- carbon based nano-scale thin film anode materials for lithium ion batteries. Electrochim[D]. Acta, 56, 4717-4723(2011).
[23] CHENG H, XIAO R, BIAN H et al. Periodic porous silicon thin films with interconnected channels as durable anode materials for lithium ion batteries[D]. Mater. Chem. Phys, 144, 25-30(2014).
[24] TONG Y, XU Z, LIU C et al. Magnetic sputtered amorphous Si/C multilayer thin films as anode materials for lithium ion batteries[J]. Power Sources, 247, 78-83(2014).
[25] LIU N, LU Z, ZHAO J et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes[D]. Nat. Nanotechnol, 9, 187-192(2014).
[26] XIE J, TONG L, SU L et al. Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance[J]. Power Sources, 342, 529-536(2017).
[27] BANG B M, LEE J I, KIM H et al. High-performance macro porous bulk silicon anodes synthesized by template-free chemical etching[D]. Adv. Energy Mater, 2, 878-883(2012).
[28] GE M, LU Y, ERCIUS P et al. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon[D]. Nano Lett, 14, 261-268(2014).
[29] GE M, RONG J, FANG X et al. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes[D]. Nano Res, 6, 174-181(2013).
[30] TIAN H, TAN X, XIN F et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries[D]. Nano Energy, 11, 490-499(2015).
[31] LIU N, WU H, MCDOWELL M T et al. A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes[D]. Nano Lett, 12, 3315-3321(2012).
[32] KIM H, HAN B, CHOO J et al. Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries[D]. Angew. Chem. Int. Ed, 47, 10151-10154(2008).
[33] JIANG H, ZHOU X, LIU G et al. Free-standing Si/graphene paper using Si nanoparticles synthesized by acid-etching Al-Si alloy powder for high-stability Li-ion battery anodes. Electrochim[D]. Acta, 188, 777-784(2016).
[34] WRODNIGG G H, WRODNIGG T M, BESENHARD J O et al. Propylene sulfite as film-forming electrolyte additive in lithium ion batteries[D]. Electrochem. Commun, 1, 148-150(1999).
[35] LI M, HOU X, SHA Y et al. Facile spray-drying/pyrolysis synjournal of core-shell structure graphite/silicon-porous carbon composite as a superior anode for Li-ion batteries[J]. Power Sources, 248, 721-728(2014).
[36] PAN Q, ZUO P, LOU S et al. Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries[J]. Alloys Compd, 723, 434-440(2017).
[37] ZUO P, YIN G, MA Y et al. Electrochemical stability of silicon/ carbon composite anode for lithium ion batteries. Electrochim[D]. Acta, 52, 4878-4883(2007).
[38] LI X, GU M, HU S et al. Mesoporous silicon sponge as an anti- pulverization structure for high-performance lithium-ion battery anodes[D]. Nature Commun, 5(2014).
[39] KIM J S, HALIM M, BYUN D et al. Amorphous carbon-coated prickle-like silicon of micro and nano hybrid anode materials for lithium-ion batteries[D]. Solid State Ionics, 260, 36-42(2014).
[40] MIN K K, BO Y J, JIN S L et al. Microstructures and electrochemical performances of nano-sized SiOx (1.18≤ x ≤1.83) as an anode material for a lithium(Li)-ion battery[J]. Power Sources, 244, 115-121(2013).
[41] TAKEZAWA H, IWAMOTO K, ITO S et al. Electrochemical behaviors of nonstoichiometric silicon suboxides (SiOx) film prepared by reactive evaporation for lithium rechargeable batteries[J]. Power Sources, 244, 149-157(2013).
[42] SCHULMEISTER K, MADER W. TEM investigation on the structure of amorphous silicon monoxide. J. Non-Cryst[D]. Solids, 320, 143-150(2003).
[43] HOHL A, WIEDER T, AKEN P A V et al. An interface clusters mixture model for the structure of amorphous silicon monoxide (SiO). J. Non-Cryst[D]. Solids, 320, 255-280(2003).
[44] LÜ P P, ZHAO H L, WANG J et al. Facile preparation and electrochemical properties of amorphous SiO2/C composite as anode material for lithium ion batteries[J]. Power Sources, 237, 291-294(2013).
[45] LIU X, ZHAO H L, JIE J Y et al. SiOx(0<x≤2) based anode materials for lithium-ion batteries[D]. Prog. Chem, 27, 336-348(2015).
[46] PHILIPPE B, DEDRYVÈRE R, ALLOUCHE J et al. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy[D]. Chem. Mater, 24, 1107-1115(2017).
[47] PARK C M, CHOI W, HWA Y et al. Characterizations and electrochemical behaviors of disproportionate SiO and its composite for rechargeable Li-ion batteries[J]. Mater. Chem, 20, 4854-4860(2010).
[48] MORITA T, TAKAMI N. Nano Si cluster-SiOx-C composite material as high-capacity anode material for rechargeable lithium batteries[J]. Electrochem. Soc, 153, A425-A430(2006).
[49] YANG X L, ZHANG P C, WEN Z Y et al. High performance silicon/carbon composite prepared by in situ carbon-thermal reduction for lithium ion batteries[J]. Alloys Compd, 496, 403-406(2010).
[50] SEONG I W, KIM K T, YOON W Y et al. Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell[J]. Power Sources, 189, 511-514(2009).
[51] KIM H J, CHOI S, LEE S J et al. Controlled prelithiation of silicon monoxide for high performance lithium-ion rechargeable full cells[D]. Nano Lett, 16, 282-288(2016).
[52] XING A, ZHANG J, BAO Z et al. A magnesiothermic reaction process for the scalable production of mesoporous silicon for rechargeable lithium batteries[D]. Chem. Commun, 49, 6743-6745(2013).
[53] YU B C, HWA Y, KIM J H et al. A new approach to synthesis of porous SiOx, anode for Li-ion batteries via chemical etching of Si crystallites. Electrochim[D]. Acta, 117, 426-430(2014).
[54] FENG X J, YANG J, LU Q W et al. Facile approach to SiOx/Si/C composite anode material from bulk SiO for lithium ion batteries[D]. Phys. Chem. Chem. Phys, 15, 14420-144206(2013).
[55] YANG T, XIAO L I, TIAN X D et al. Preparation and electrochemical performance of Si@C/SiOx as anode material for lithium-ion batteries[J]. Inorg. Mater, 32, 699-704(2017).
[56] LIU Y H, OKANO M, MUKAI T et al. Improvement of thermal stability and safety of lithium ion battery using SiO anode material[J]. Power Sources, 304, 9-14(2016).
[57] MIYUKI T, OKUYAMA Y, SAKAMOTO T et al. Characterization of heat treated SiO powder and development of a LiFePO4/ SiO lithium ion battery with high-rate capability and thermo stability[D]. Electrochemistry, 80, 401-404(2012).
[58] MASAYUKI Y, KAZUTAKA U, ATSUSHI U. Performance of the “SiO”-carbon composite-negative electrodes for high-capacity lithium-ion batteries; prototype 14500 batteries[J]. Power Sources, 225, 221-225(2013).
[59] LIU X. Facile synthesis and electrochemical performance of hollow SiO@void@C composite as anode material for lithium-ion batteries[D]. Chin. Batt. Indust, 21, 3-9(2017).
[60] LIU W R, YEN Y C, WU H C et al. Nano-porous SiO/carbon composite anode for lithium-ion batteries[J]. Appl. Electrochem, 39, 1643-1649(2009).
[61] CHOI I, MIN J L, OH S M et al. Fading mechanisms of carbon- coated and disproportionated Si/SiOx negative electrode (Si/SiOx/C) in Li-ion secondary batteries: dynamics and component analysis by TEM. Electrochim[D]. Acta, 85, 369-376(2012).
[62] SHI C C, YAN X L, ZHANG L L et al. High-performance SiO/C/G composite anode for lithium ion batteries[J]. Inorg. Mater, 28, 943-948(2013).
Get Citation
Copy Citation Text
Yi TAN, Kai WANG.
Category: REVIEW
Received: Jul. 25, 2018
Accepted: --
Published Online: Sep. 24, 2021
The Author Email: