Acta Optica Sinica, Volume. 43, Issue 8, 0822005(2023)
Key Optical Engineering Issues of High-Power Laser Facility
[1] Haynam C A, Wegner P J, Auerbach J M et al. National Ignition Facility laser performance status[J]. Applied Optics, 46, 3276-3303(2007).
[2] Denis V, Nicolaizeau M, Néauport J et al. LMJ 2021 facility status[J]. Proceedings of SPIE, 11666, 1166603(2021).
[3] Nakatuska M, Azechi H, Jitsuno T et al. Glass laser system, Gekko Ⅻ upgrade for ICF ignition[J]. Fusion Technology, 26, 738-744(1994).
[4] Danson C N, Malcolm W, Barr J R M et al. A history of high-power laser research and development in the United Kingdom[J]. High Power Laser Science and Engineering, 9, e18(2021).
[5] Rozanov V B, Yu Gus'kov S, Vergunova G A et al. Direct drive targets for the megajoule facility UFL-2M[J]. Journal of Physics: Conference Series, 688, 012095(2016).
[6] Zhu J Q, Chen S H, Zheng Y X et al. Review on development of Shenguang-Ⅱ laser facility[J]. Chinese Journal of Lasers, 46, 0100002(2019).
[7] Zhu J Q[M]. Design and development of large high-power laser device(2021).
[8] Zhu J Q, Zhu J, Li X C et al. Status and development of high-power laser facilities at the NLHPLP[J]. High Power Laser Science and Engineering, 6, e55(2018).
[9] Zhang X M, Wei X F. Review of new generation of huge-scale high peak power laser facility in China[J]. Chinese Journal of Lasers, 46, 0100003(2019).
[10] English E R,, Laumann C W, Miller J L et al. Optical system design of the National Ignition Facility[J]. Proceedings of SPIE, 3482, 726-736(1998).
[11] Miller J L,, Schweyen J C. Ghost reflection analysis for the main laser of the National Ignition Facility[J]. Proceedings of SPIE, 3482, 748-753(1998).
[12] Korniski R J,, Miller J L. Spatial filter lens design for the main laser of the National Ignition Facility[J]. Proceedings of SPIE, 3482, 737-747(1998).
[13] Zhao D F, Hua N, Zhang Y N et al. Development of final optics assembly for additional beam in “Shenguang-Ⅱ” laser facility[J]. High Power Laser and Particle Beams, 19, 245-248(2007).
[14] Qiao Z F, Lu X Q, Zhao D F et al. Arrangement design of the final optics assembly for the SG-Ⅱ upgrading laser[J]. Chinese Journal of Lasers, 35, 1328-1332(2008).
[15] Zhang Y, Zhang Y L, Li X Y et al. Study on sensitivities of ghost images to lens fabrication errors in high power laser facilities[J]. Acta Optica Sinica, 30, 3568-3573(2010).
[16] Spaeth M L, Manes K R, Kalantar D H et al. Description of the NIF laser[J]. Fusion Science and Technology, 69, 125-145(2016).
[17] Jiao Z Y, Shao P, Zhao D F et al. Design and performance of final optics assembly in SG-Ⅱ Upgrade laser facility[J]. High Power Laser Science and Engineering, 6, e14(2018).
[18] Hendrix J L, Schweyen J C, Rowe J et al. Ghost analysis visualization techniques for complex systems: examples from the NIF final optics assembly[J]. Proceedings of SPIE, 3492, 306-320(1999).
[19] Campbell J H, Hawley-Fedder R A, Stolz C J et al. NIF optical materials and fabrication technologies: an overview[J]. Proceedings of SPIE, 5341, 84-101(2004).
[20] Hunt J T, Renard P A, Simmons W W. Improved performance of fusion lasers using the imaging properties of multiple spatial filters[J]. Applied Optics, 16, 779-782(1977).
[21] Mainguy S, Tovena-Pécault I, Le Garrec B. Propagation of LIL/LMJ beams under the interaction with contamination particles[J]. Proceedings of SPIE, 5991, 59910G(2005).
[22] You K W, Zhang Y L, Zhang X J et al. Analysis of near-field modulations caused by defects in high power laser system[J]. Chinese Journal of Lasers, 43, 0302002(2016).
[23] Bespalov V I, Talanov V I. Filamentary structure of light beams in nonlinear liquids[J]. JETP Letters, 3, 471-476(1966).
[24] Hunt J T, Manes K R, Renard P A. Hot images from obscurations[J]. Applied Optics, 32, 5973(1993).
[25] Zhou J H, Li D H. Non-hot-image-plane intense fringe from double scatterers in an intense laser beam through cascaded Kerr medium disks[J]. Applied Optics, 58, 446-453(2019).
[26] You K W, Zhang Y L, Zhang X J et al. Structural evolution of axial intensity distribution during hot image formation[J]. Applied Optics, 56, 4835-4842(2017).
[27] Wang H C, Jiao Z Y, Zhang Y L et al. Defect edge steepness dependence of multiple nonlinear hot-image formation from a single phase defect[J]. Optics Express, 28, 25591-25605(2020).
[28] Li L Y, Wang S F, Li Y Z et al. Ghosts analysis of the spatial filter in “SHENGUANG” facility[J]. Chinese Journal of Lasers, 28, 826-828(2001).
[29] Laslandes M, Hugot E, Ferrari M et al. Mirror actively deformed and regulated for applications in space: design and performance[J]. Optical Engineering, 52, 091803(2013).
[30] Lemaitre G R. Review on active optics methods: what can we do by elastic bending?[J]. Proceedings of SPIE, 7655, 76550A(2010).
[31] Ren Z Y, Liu Z G, Zhu J Q. Optimum support scheme with fringe moment on the large clear aperture of transmitting mirror[J]. Proceedings of SPIE, 12057, 120571Z(2021).
[32] Zhu J Q, Tao H, Pan X et al. Computational imaging streamlines high-power laser system characterization[J]. Laser Focus World, 51, 39-42(2015).
[33] Pan X C, Tao H, Liu C et al. Applications of iterative algorithm based on phase modulation in high power laser facilities[J]. Chinese Journal of Lasers, 43, 0108001(2016).
[34] Pan X, Veetil S P, Liu C et al. On-shot laser beam diagnostics for high-power laser facility with phase modulation imaging[J]. Laser Physics Letters, 13, 055001(2016).
[35] Pan X C, Veetil S P, Wang B S et al. Ptychographical imaging with partially saturated diffraction patterns[J]. Journal of Modern Optics, 62, 1270-1277(2015).
[36] Tao H, Veetil S P, Pan X C et al. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method[J]. Applied Optics, 54, 6632-6639(2015).
[37] Tao H, Liu C, Pan X C et al. Measurement of thermal distortion of the optical element in high repetition rate laser with coherent modulation imaging[J]. Chinese Journal of Lasers, 43, 1101002(2016).
[38] Dorrer C, Zuegel J D. Design and analysis of binary beam shapers using error diffusion[J]. Journal of the Optical Society of America B, 24, 1268-1275(2007).
[39] Xie J, Fan W, Li X C et al. Spatial laser beam shaping using binary panels[J]. Acta Optica Sinica, 28, 1959-1966(2008).
[40] Fan W, Jiang Y E, Wang J F et al. Progress of the injection laser system of SG-Ⅱ[J]. High Power Laser Science and Engineering, 6, e34(2018).
[41] Heebner J, Borden M, Miller P et al. A programmable beam shaping system for tailoring the profile of high fluence laser beams[J]. Proceedings of SPIE, 7842, 78421C(2010).
[44] Di Nicola J M, Bond T, Bowers M et al. The national ignition facility: laser performance status and performance quad results at elevated energy[J]. Nuclear Fusion, 59, 032004(2019).
[45] Huang D J, Fan W, Li X C et al. An optically addressed liquid crystal light valve with high transmittance[J]. Proceedings of SPIE, 8556, 855615(2012).
[46] Huang D J, Fan W, Li X C et al. Performance of an optically addressed liquid crystal light valve and its application in optics damage protection[J]. Chinese Optics Letters, 11, 072301(2013).
[47] Huang D J, Fan W, Cheng H et al. Applications of OALCLV in the high power laser systems[J]. Proceedings of SPIE, 10457, 104571P(2017).
[48] Wang C, Wei H, Wang J F et al. 1 J, 1 Hz lamp-pumped high-gain Nd∶phosphate glass laser amplifier[J]. Chinese Optics Letters, 15, 011401(2017).
[49] Di Nicola J M G, Yang S T, Bond T C et al. The National Ignition Facility laser performance status[J]. Proceedings of SPIE, 11666, 1166604(2021).
[50] Guo A L, Zhu H D, Yang Z P et al. Wavefront propagation modeling and verification of the SG-Ⅱ updated laser facility[J]. Acta Optica Sinica, 33, 0214001(2013).
[51] Guo A L, Zhu H D, Yang Z P et al. Deformable mirror control algorithm based on the phase correction at the actuator position[J]. Acta Optica Sinica, 33, 0311001(2013).
[52] Guo A L, Zhu H D, Tang S W et al. Residual wavefront aberration of high-power laser facility[J]. Acta Optica Sinica, 33, 0814002(2013).
[53] Lin Y, Kessler T J, Lawrence G N. Design of continuous surface-relief phase plates by surface-based simulated annealing to achieve control of focal-plane irradiance[J]. Optics Letters, 21, 1703-1705(1996).
[54] Skupsky S, Short R W, Kessler T et al. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light[J]. Journal of Applied Physics, 66, 3456-3462(1989).
[55] Cui Z R, Kang J, Xie X L et al. Compensation for chromatic aberration in femtosecond petawatt laser systems based on zoom image transfer[J]. Chinese Journal of Lasers, 46, 0905001(2019).
[56] Kang J, Cui Z R, Zhu P et al. Research progress of achromatic technology in ultra-short and ultra-intense laser facility[J]. Laser & Optoelectronics Progress, 57, 090001(2020).
[57] Sommer S C, Bliss E S. Beam positioning[J]. Proceedings of SPIE, 3492, 112-135(1999).
[58] Xu J, Liu F, Yang P Q et al. Beam pointing stability analysis based on dynamic distribution for high power laser facility[J]. Chinese Journal of Lasers, 38, 1002001(2011).
[59] Liu F. Beam Positioning Stability Analysis and Improvements on High Power Laser Facility[D], 36-55(2012).
[60] Tietbohl G L, Sommer S C. Stability design considerations for mirror support systems in ICF lasers[J]. Proceedings of SPIE, 3047, 649-660(1997).
[61] Tang S X, Zhu J Q, Li X C et al. Light beam drop point position feedback device[P].
[62] Tang S X, Guo Y J, Yang P Q et al. Stability improvement of multi-beam picosecond-petawatt laser system for ultrahigh peak-power applications[J]. Frontiers in Physics, 11, 1118254(2023).
[63] Gao Y Q, Zhu B Q, Liu D Z et al. Far field auto-alignment system used in SG‑Ⅱ‑Up system[J]. Acta Physica Sinica, 60, 065204(2011).
[64] Gao Y Q, Cui Y, Li H et al. Alignment system for SGII-Up laser facility[J]. Optics and Laser Technology, 100, 87-96(2018).
[65] Ding L, Liu D Z, Gao Y Q et al. New far-field detection technique for beam alignment system in high power laser facility[J]. Acta Physica Sinica, 57, 5713-5717(2008).
[66] Liu D Z, Ding L, Gao Y Q et al. Far-field detection system of laser beams alignment based on gratings sampling and on-axial illumination[J]. Chinese Journal of Lasers, 36, 1101-1104(2009).
[67] Kalantar D H, Di Nicola P, Shingleton N et al. An overview of target and diagnostic alignment at the National Ignition Facility[J]. Proceedings of SPIE, 8505, 850509(2012).
[68] Ren L, Shao P, Zhao D F et al. Target alignment in the Shen-Guang Ⅱ upgrade laser facility[J]. High Power Laser Science and Engineering, 6, e10(2018).
[69] Lin W H, Zhu J Q, Ren L. Advances in target alignment and beam-target coupling technologies of laser fusion facility[J]. Chinese Journal of Lasers, 47, 04000001(2020).
[70] Zhou Y, Shao P, Zhao D F et al. Research on the system of the nanosecond target aiming and positioning of the SG‑Ⅱ updated laser facility[J]. Chinese Journal of Lasers, 41, 1208002(2014).
Get Citation
Copy Citation Text
Jianqiang Zhu, Pengqian Yang, Yanli Zhang, Cheng Liu, Shenlei Zhou, Zhigang Liu, Shunxing Tang, Ailin Guo, Quantang Fan, Daizhong Liu, Guowen Zhang, Mingying Sun, Zhaoyang Jiao, Yan Zhang, Jun Kang, Xiang Jiao, Xuejie Zhang, Zhiyuan Ren, Liangze Pan, Dajie Huang, Xiaoqi Zhang, Ping Zhu, Neng Hua, Zhuocai Jiang, Liangyu Wang, Xueying Yang, Fuli Yang, Yanjia Zhang, Weiheng Lin. Key Optical Engineering Issues of High-Power Laser Facility[J]. Acta Optica Sinica, 2023, 43(8): 0822005
Category: Optical Design and Fabrication
Received: Dec. 9, 2022
Accepted: Feb. 8, 2023
Published Online: Apr. 6, 2023
The Author Email: Zhu Jianqiang (jqzhu@siom.ac.cn), Yang Pengqian (yangpengqian@siom.ac.cn), Zhang Yanli (zhangyl@siom.ac.cn)