Chinese Optics Letters, Volume. 21, Issue 2, 020601(2023)
50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition
[1] J. Xu. Underwater wireless optical communication: why, what, and how? [Invited]. Chin. Opt. Lett., 17, 100007(2019).
[2] S. Zhu, X. Chen, X. Liu, G. Zhang, P. Tian. Recent progress in and perspectives of underwater wireless optical communication. Prog. Quantum Electron., 73, 100274(2020).
[3] J. Lin, Z. Du, C. Yu, W. Ge, W. Lü, H. Deng, C. Zhang, X. Chen, Z. Zhang, J. Xu. Machine-vision-based acquisition, pointing, and tracking system for underwater wireless optical communications. Chin. Opt. Lett., 19, 050604(2021).
[4] C. Fei, X. Hong, J. Du, G. Zhang, Y. Wang, X. Shen, Y. Lu, Y. Guo, S. He. High-speed underwater wireless optical communications: from a perspective of advanced modulation formats [Invited]. Chin. Opt. Lett., 17, 100012(2019).
[5] C. Lu, J. Wang, S. Li, Z. Xu. 60 m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization. Conference on Lasers and Electro-Optics, SM2G.6(2019).
[6] M. Zhao, X. Li, X. Chen, Z. Tong, W. Lyu, Z. Zhang, J. Xu. Long-reach underwater wireless optical communication with relaxed link alignment enabled by optical combination and arrayed sensitive receivers. Opt. Express, 28, 34450(2020).
[7] X. Yang, Z. Tong, Y. Dai, X. Chen, H. Zhang, H. Zou, J. Xu. 100 m full-duplex underwater wireless optical communication based on blue and green lasers and high sensitivity detectors. Opt. Commun., 498, 127261(2021).
[8] X. Chen, X. Yang, Z. Tong, Y. Dai, X. Li, M. Zhao, Z. Zhang, J. Zhao, J. Xu. 150 m/500 Mbps underwater wireless optical communication enabled by sensitive detection and the combination of receiver-side partial response shaping and TCM technology. J. Light. Technol., 39, 4614(2021).
[9] Y. Dai, X. Chen, X. Yang, Z. Tong, Z. Du, W. Lyu, C. Zhang, H. Zhang, H. Zou, Y. Cheng, D. Ma, J. Zhao, Z. Zhang, J. Xu. 200-m/500-Mbps underwater wireless optical communication system utilizing a sparse nonlinear equalizer with a variable step size generalized orthogonal matching pursuit. Opt. Express, 29, 32228(2021).
[10] C. Fei, Y. Wang, J. Du, R. Chen, N. Lv, G. Zhang, J. Tian, X. Hong, S. He. 100-m/3-Gbps underwater wireless optical transmission using a wideband photomultiplier tube (PMT). Opt. Express, 30, 2326(2022).
[11] J. Huang, C. Li, J. Dai, R. Shu, L. Zhang, J. Wang. Real-time and high-speed underwater photon-counting communication based on SPAD and PPM symbol synchronization. IEEE Photon. J., 13, 7300209(2021).
[12] X. Hong, C. Fei, G. Zhang, J. Du, S. He. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit. Opt. Lett., 44, 558(2019).
[13] X. Chen, W. Lyu, Z. Zhang, J. Zhao, J. Xu. 56-m/3.31-Gbps underwater wireless optical communication employing Nyquist single carrier frequency domain equalization with noise prediction. Opt. Express, 28, 23784(2020).
[14] J. Liu, Z. Gu, B. Zheng, L. Zhao, Z. Gong. A design of underwater wireless laser communication system based on PPM modulating method. Ocean–Shanghai(2016).
[15] J. Wang, C. Tian, X. Yang, W. Shi, Q. Niu, T. Aaron Gulliver. Underwater wireless optical communication system using a 16-QAM modulated 450-nm laser diode based on an FPGA. Appl. Opt., 58, 4553(2019).
[16] M. Chen, P. Zou, L. Zhang, N. Chi. Demonstration of a 2.34 Gbit/s real-time single silicon-substrate blue LED-based underwater VLC system. IEEE Photon. J., 12, 7900211(2020).
[17] J. Li, J. Li, B. Yang, D. Ye, L. Wang, K. Fu, J. Piao, Y. Wang. A real-time, full-duplex system for underwater wireless optical communication: hardware structure and optical link model. IEEE Access, 8, 109372(2020).
[18] Y. Shao, R. Deng, J. He, K. Wu, L.-K. Chen. Real-time 2.2-Gb/s water-air OFDM-OWC system with low-complexity transmitter-side DSP. J. Light. Technol., 38, 5668(2020).
[19] Z. Jiang, C. Gong, Z. Xu. Achievable rates and signal detection for photon-level photomultiplier receiver based on statistical non-linear model. IEEE Trans. Wirel. Commun., 18, 6015(2019).
[20] H. M. Salgado, J. J. O’Reilly. Volterra series analysis of distortion in semiconductor laser diodes. Optoelectron., 138, 379(1991).
[21] L. Ding, S. Member, G. T. Zhou, S. Member, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, C. R. Giardina. Using memory polynomials. IEEE Trans. Commun., 52, 159(2004).
[22] T. Fath, C. Heller, H. Haas. Power level stepping. J. Light. Technol., 31, 1734(2013).
[23] A. D. Griffiths, M. S. Islim, J. Herrnsdorf, J. J. D. McKendry, R. Henderson, H. Haas, E. Gu, M. D. Dawson. CMOS-integrated GaN LED array for discrete power level stepping in visible light communications. Opt. Express, 25, A338(2017).
[24] M. Kong, Y. Chen, R. Sarwar, B. Sun, Z. Xu, J. Han, J. Chen, H. Qin, J. Xu. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal. Opt. Express, 26, 3087(2018).
[25] Y. Yang, C. Chen, P. Du, X. Deng, J. Luo, W.-D. Zhong, L. Chen. Low complexity OFDM VLC system enabled by spatial summing modulation. Opt. Express, 27, 30788(2019).
Get Citation
Copy Citation Text
Yongxin Cheng, Xingqi Yang, Yufan Zhang, Chao Zhang, Hao Zhang, Zhijian Tong, Yizhan Dai, Weichao Lü, Xin Li, Haiwu Zou, Zejun Zhang, Jing Xu, "50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition," Chin. Opt. Lett. 21, 020601 (2023)
Category: Fiber Optics and Optical Communications
Received: May. 27, 2022
Accepted: Aug. 30, 2022
Published Online: Oct. 12, 2022
The Author Email: Jing Xu (jxu-optics@zju.edu.cn)