Chinese Optics Letters, Volume. 21, Issue 2, 020601(2023)

50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition

Yongxin Cheng1, Xingqi Yang1, Yufan Zhang1, Chao Zhang1, Hao Zhang1, Zhijian Tong1, Yizhan Dai1, Weichao Lü1, Xin Li1, Haiwu Zou1, Zejun Zhang1, and Jing Xu1,2,3、*
Author Affiliations
  • 1Optical Communications Laboratory, Ocean College, Zhejiang University, Zhoushan 316021, China
  • 2Hainan Institute of Zhejiang University, Sanya 572025, China
  • 3Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Ocean College, Zhejiang University, Zhoushan 316021, China
  • show less
    Figures & Tables(9)
    Process of PAM-4 modulation and demodulation based on FPGA.
    Experimental setup diagram of the proposed UWOC system based on the FPGA and a fiber combiner. Inserts: (a) the FPGA, (b) the transmitter cabin, (c) the receiver cabin, and (d) the transmitter cabin in a 50 m swimming pool.
    (a) P-I and V-I curves of the LD; (b) normalized frequency responses of the system.
    Transfer curve of the UWOC system.
    Relationships between attenuation of VEA and real-time BER under different bias currents in (a) the electrical PAM-4 scheme and (b) the optical PAM-4 scheme.
    BERs of the real-time processing and offline processing at different data rates.
    EVM at different data rates in the optical and electrical PAM-4 UWOC system. Inserts: (a) electrical PAM-4 scheme at 187.5 Mbit/s, (b) optical PAM-4 scheme at 187.5 Mbit/s.
    Ratio of the amplitude difference at different data rates in the optical and electrical PAM-4 UWOC system.
    • Table 1. The Progress of UWOC Systems

      View table
      View in Article

      Table 1. The Progress of UWOC Systems

      Light Source/DetectoraUnderwater Distance (m)Attenuation CoefficientAttenuation LengthbData RateModulation SchemecHardwaredReference
      LD/PIN35 (tap water)//12.62 Gbit/sPCS-QAM-DMTAWG/OSC2019[12]
      LD/APD60 (tap water)//2.5 Gbit/sOOKAWG/OSC2019[5]
      LD/APD56 (tap water)0.0876 m−14.90563.31 Gbit/sQAMAWG/OSC2020[13]
      LD/MPPC100 (pool water)0.24 m−1248.4 Mbit/sOOKAWG/OSC2020[6]
      LD/PMT100 (pool water)0.0585 m−15.85200 Mbit/sOOKAWG/OSC2021[7]
      LD/PMT150 (pool water)0.053 m−18.775500 Mbit/sPAMAWG/OSC2021[8]
      LD/PMT200 (pool water)0.0325 m−16.5500 Mbit/sPAMAWG/OSC2021[9]
      LD/PMT100.6 (tap water)0.0658 m−16.61953 Gbit/sOOKAWG/OSC2022[10]
      LD/PMT5 (turbid water)//10 Mbit/sPPMFPGA2016[14]
      LD/PIN3 (artificial seawater)0.481 m−11.44350 Mbit/sQAMFPGA2019[15]
      LED/PIN1.2 (tap water)//2.34 Gbit/sDMTFPGA2020[16]
      LED/APD10 (tap water)0.056 m−10.561 Mbit/sFSKFPGA2020[17]
      LD/APD3.6 (tap water)//2.2 Gbit/sOFDMFPGA2020[18]
      LD/SPAD2 (tap water)//6.21 Mbit/sPPMFPGA2021[11]
      LD/PMT50 (pool water)0.1307 m−16.535187.5 Mbit/sPAMFPGAThis work
    Tools

    Get Citation

    Copy Citation Text

    Yongxin Cheng, Xingqi Yang, Yufan Zhang, Chao Zhang, Hao Zhang, Zhijian Tong, Yizhan Dai, Weichao Lü, Xin Li, Haiwu Zou, Zejun Zhang, Jing Xu, "50 m/187.5 Mbit/s real-time underwater wireless optical communication based on optical superimposition," Chin. Opt. Lett. 21, 020601 (2023)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: May. 27, 2022

    Accepted: Aug. 30, 2022

    Published Online: Oct. 12, 2022

    The Author Email: Jing Xu (jxu-optics@zju.edu.cn)

    DOI:10.3788/COL202321.020601

    Topics