Chinese Journal of Lasers, Volume. 49, Issue 10, 1002701(2022)

Recent Advances in Micro/Nano 4D Printing

Mingduo Zhang1, Chunsan Deng1, Xuhao Fan1, Zexu Zhang1, Ajun Chen1, Yufeng Tao3, Yuncheng Liu1, Binzhang Jiao1, Hui Gao1,2, and Wei Xiong1,2、*
Author Affiliations
  • 1School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Optical Valley Laboratory, Wuhan 430074, Hubei, China
  • 3Institute of Micro-Nano Optoelectronics and Terahertz Technology, Jiangsu University, Zhenjiang 212013, Jiangsu, China
  • show less
    References(100)

    [1] Tibbits S. 4D printing: multi-material shape change[J]. Architectural Design, 84, 116-121(2014).

    [2] Raviv D, Zhao W, McKnelly C et al. Active printed materials for complex self-evolving deformations[J]. Scientific Reports, 4, 7422(2014).

    [3] Momeni F, M Mehdi Hassani N S, Liu X et al. A review of 4D printing[J]. Materials & Design, 122, 42-79(2017).

    [4] Lee A Y, An J, Chua C K. Two-way 4D printing: a review on the reversibility of 3D-printed shape memory materials[J]. Engineering, 3, 663-674(2017).

    [5] Mitchell A, Lafont U, Hołyńska M et al. Additive manufacturing: a review of 4D printing and future applications[J]. Additive Manufacturing, 24, 606-626(2018).

    [6] Ryan K R, Down M P, Banks C E. Future of additive manufacturing: overview of 4D and 3D printed smart and advanced materials and their applications[J]. Chemical Engineering Journal, 403, 126162(2021).

    [7] Rafiee M, Farahani R D, Therriault D. Multi-material 3D and 4D printing: a survey[J]. Advanced Science, 7, 1902307(2020).

    [8] Ghomi E R, Khosravi F, Neisiany R E et al. Future of additive manufacturing in healthcare[J]. Current Opinion in Biomedical Engineering, 17, 100255(2021).

    [9] Wan Z Q, Zhang P, Liu Y S et al. Four-dimensional bioprinting: current developments and applications in bone tissue engineering[J]. Acta Biomaterialia, 101, 26-42(2020).

    [10] González-Henríquez C M, Sarabia-Vallejos M A, Rodriguez-Hernandez J. Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications[J]. Progress in Polymer Science, 94, 57-116(2019).

    [11] Gao B, Yang Q Z, Zhao X et al. 4D bioprinting for biomedical applications[J]. Trends in Biotechnology, 34, 746-756(2016).

    [12] Adam G, Benouhiba A, Rabenorosoa K et al. 4D printing: enabling technology for microrobotics applications[J]. Advanced Intelligent Systems, 3, 2000216(2021).

    [13] Xiong W, Zhou Y S, Hou W J et al. Laser-based micro/nanofabrication in one, two and three dimensions[J]. Frontiers of Optoelectronics, 8, 351-378(2015).

    [14] Guo D M, Lu Y F. Overview of extreme manufacturing[J]. International Journal of Extreme Manufacturing, 1, 020201(2019).

    [15] Miskin M Z, Cortese A J, Dorsey K et al. Electronically integrated, mass-manufactured, microscopic robots[J]. Nature, 584, 557-561(2020).

    [16] Cui J Z, Huang T Y, Luo Z C et al. Nanomagnetic encoding of shape-morphing micromachines[J]. Nature, 575, 164-168(2019).

    [17] Ge Q, Li Z Q, Wang Z L et al. Projection micro stereolithography based 3D printing and its applications[J]. International Journal of Extreme Manufacturing, 2, 022004(2020).

    [18] Spiegel C A, Hippler M, Münchinger A et al. 4D printing at the microscale[J]. Advanced Functional Materials, 30, 1907615(2020).

    [19] Zhang Y L, Tian Y, Wang H et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation[J]. ACS Nano, 13, 4041-4048(2019).

    [20] Huang T Y, Huang H W, Jin D D et al. Four-dimensional micro-building blocks[J]. Science Advances, 6, eaav8219(2020).

    [21] So S, Hayward R C. Tunable upper critical solution temperature of poly(N-isopropylacrylamide) in ionic liquids for sequential and reversible self-folding[J]. ACS Applied Materials & Interfaces, 9, 15785-15790(2017).

    [22] Sitti M, Wiersma D S. Pros and cons: magnetic versus optical microrobots[J]. Advanced Materials, 32, e1906766(2020).

    [23] Gladman A S, Matsumoto E A, Nuzzo R G et al. Biomimetic 4D printing[J]. Nature Materials, 15, 413-418(2016).

    [24] Lao Z X, Xia N, Wang S J et al. Tethered and untethered 3D microactuators fabricated by two-photon polymerization: a review[J]. Micromachines, 12, 465(2021).

    [25] Kuang X, Roach D J, Wu J T et al. Advances in 4D printing: materials and applications[J]. Advanced Functional Materials, 29, 1805290(2019).

    [26] Zhou N J, Liu C Y, Lewis J A et al. Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications[J]. Advanced Materials, 29, 1605198(2017).

    [27] Truby R L, Lewis J A. Printing soft matter in three dimensions[J]. Nature, 540, 371-378(2016).

    [28] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [29] Zhou G Z, He M F, Yang Z Y et al. Dual-beam laser direct writing nano-lithography system based on peripheral photoinhibition technology[J]. Chinese Journal of Lasers, 49, 0202001(2022).

    [30] Zhang W C, Zheng M L. Research progress of two-photon initiator with high efficiency and preparation of hydrogel microstructure in aqueous phase[J]. Chinese Journal of Lasers, 48, 0202007(2021).

    [31] Qin N, Qian Z G, Zhou C Z et al. 3D electron-beam writing at sub-15 nm resolution using spider silk as a resist[J]. Nature Communications, 12, 5133(2021).

    [32] Wang Y, Cui H T, Wang Y C et al. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration[J]. ACS Applied Materials & Interfaces, 13, 12746-12758(2021).

    [33] Zarzar L D, Kim P, Kolle M et al. Direct writing and actuation of three-dimensionally patterned hydrogel pads on micropillar supports[J]. Angewandte Chemie International Edition, 50, 9356-9360(2011).

    [34] Ding M, Jing L, Yang H et al. Multifunctional soft machines based on stimuli-responsive hydrogels: from freestanding hydrogels to smart integrated systems[J]. Materials Today Advances, 8, 100088(2020).

    [35] Shang Y Y, Wang J X, Ikeda T et al. Bio-inspired liquid crystal actuator materials[J]. Journal of Materials Chemistry C, 7, 3413-3428(2019).

    [36] Chen Q, Lü P, Huang J et al. Intelligent shape-morphing micromachines[J]. Research, 2021, 9806463(2021).

    [37] Vázquez-González M, Willner I. Stimuli-responsive biomolecule-based hydrogels and their applications[J]. Angewandte Chemie, 59, 15342-15377(2020).

    [38] Zhang Y S, Khademhosseini A. Advances in engineering hydrogels[J]. Science, 356, eaaf3627(2017).

    [39] Champeau M, Heinze D A, Viana T N et al. 4D printing of hydrogels: a review[J]. Advanced Functional Materials, 30, 1910606(2020).

    [40] Zhang K Y, Feng Q, Fang Z W et al. Structurally dynamic hydrogels for biomedical applications: pursuing a fine balance between macroscopic stability and microscopic dynamics[J]. Chemical Reviews, 121, 11149-11193(2021).

    [41] Nayak J, Chilivery R, Kumar A K et al. A bioinspired assembly to simultaneously heterogenize polyoxometalates as nanozymes and encapsulate enzymes in a microstructure endowing efficient peroxidase-mimicking activity[J]. ACS Sustainable Chemistry & Engineering, 9, 15819-15829(2021).

    [42] Plamper F A, Richtering W. Functional microgels and microgel systems[J]. Accounts of Chemical Research, 50, 131-140(2017).

    [43] Dupont P E, Nelson B J, Goldfarb M et al. A decade retrospective of medical robotics research from 2010 to 2020[J]. Science Robotics, 6, eabi8017(2021).

    [44] Yang H, Buguin A, Taulemesse J M et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions[J]. Journal of the American Chemical Society, 131, 15000-15004(2009).

    [45] Guo Y B, Zhang J C, Hu W Q et al. Shape-programmable liquid crystal elastomer structures with arbitrary three-dimensional director fields and geometries[J]. Nature Communications, 12, 5936(2021).

    [46] Agrawal A, Luchette P, Palffy-Muhoray P et al. Surface wrinkling in liquid crystal elastomers[J]. Soft Matter, 8, 7138-7142(2012).

    [47] van Oosten C L, Bastiaansen C W M, Broer D J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light[J]. Nature Materials, 8, 677-682(2009).

    [48] Yan Z, Ji X M, Wu W et al. Light-switchable behavior of a microarray of azobenzene liquid crystal polymer induced by photodeformation[J]. Macromolecular Rapid Communications, 33, 1362-1367(2012).

    [49] Choi J, Jo W, Lee S Y et al. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars[J]. ACS Nano, 11, 7821-7828(2017).

    [50] del Pozo M, Delaney C, Bastiaansen C W M et al. Direct laser writing of four-dimensional structural color microactuators using a photonic photoresist[J]. ACS Nano, 14, 9832-9839(2020).

    [51] Zeng H, Wasylczyk P, Parmeggiani C et al. Light-fueled microscopic walkers[J]. Advanced Materials, 27, 3883-3887(2015).

    [52] Martella D, Nocentini S, Nuzhdin D et al. Photonic microhand with autonomous action[J]. Advanced Materials, 29, 1704047(2017).

    [53] Lü J A, Liu Y Y, Wei J et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators[J]. Nature, 537, 179-184(2016).

    [54] Liu Y J, Du H Y, Liu L W et al. Shape memory polymers and their composites in aerospace applications: a review[J]. Smart Materials and Structures, 23, 023001(2014).

    [55] Ze Q J, Kuang X, Wu S et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation[J]. Advanced Materials, 32, e1906657(2020).

    [56] Lendlein A, Gould O E C. Reprogrammable recovery and actuation behaviour of shape-memory polymers[J]. Nature Reviews Materials, 4, 116-133(2019).

    [57] Shao Y L, Zhao J, Fan Y et al. Shape memory superhydrophobic surface with switchable transition between “lotus effect” to “rose petal effect”[J]. Chemical Engineering Journal, 382, 122989(2020).

    [58] Shang J J, Le X X, Zhang J W et al. Trends in polymeric shape memory hydrogels and hydrogel actuators[J]. Polymer Chemistry, 10, 1036-1055(2019).

    [59] Ma Z C, Hu X Y, Zhang Y L et al. Smart compound eyes enable tunable imaging[J]. Advanced Functional Materials, 29, 1903340(2019).

    [60] Hu Y L, Wang Z Y, Jin D D et al. Botanical-inspired 4D printing of hydrogel at the microscale[J]. Advanced Functional Materials, 30, 1907377(2020).

    [61] Elliott L V, Salzman E E, Greer J R. Stimuli responsive shape memory microarchitectures[J]. Advanced Functional Materials, 31, 2008380(2021).

    [62] Zhou H J, Mayorga-Martinez C C, Pané S et al. Magnetically driven micro and nanorobots[J]. Chemical Reviews, 121, 4999-5041(2021).

    [63] Hawkes E W, Cutkosky M R. Design of materials and mechanisms for responsive robots[J]. Annual Review of Control, Robotics, and Autonomous Systems, 1, 359-384(2018).

    [64] Fischer P, Nelson B J, Yang G Z. New materials for next-generation robots[J]. Science Robotics, 3, eaau0448(2018).

    [65] Kim S, Lee S, Lee J et al. Fabrication and manipulation of ciliary microrobots with non-reciprocal magnetic actuation[J]. Scientific Reports, 6, 30713(2016).

    [66] Jiang S J, Hu Y L, Wu H et al. Three-dimensional multifunctional magnetically responsive liquid manipulator fabricated by femtosecond laser writing and soft transfer[J]. Nano Letters, 20, 7519-7529(2020).

    [67] Wang Z Z, Wang K, Liang D S et al. Hybrid magnetic micropillar arrays for programmable actuation[J]. Advanced Materials, 32, e2001879(2020).

    [68] Li C Z, Jiao Y L, Zhang Y Y et al. Noncontact all-in-situ reversible reconfiguration of femtosecond laser-induced shape memory magnetic microcones for multifunctional liquid droplet manipulation and information encryption[J]. Advanced Functional Materials, 31, 2100543(2021).

    [69] Lü C, Sun X C, Xia H et al. Humidity-responsive actuation of programmable hydrogel microstructures based on 3D printing[J]. Sensors and Actuators B: Chemical, 259, 736-744(2018).

    [70] Deng C S, Fan X H, Tao Y F et al. Femtosecond laser four-dimensional printing based on humidity responsive hydrogels[J]. Chinese Journal of Lasers, 48, 0202016(2021).

    [71] Wei S X, Liu J, Zhao Y Y et al. Protein-based 3D microstructures with controllable morphology and pH-responsive properties[J]. ACS Applied Materials & Interfaces, 9, 42247-42257(2017).

    [72] Xin C, Jin D D, Hu Y L et al. Environmentally adaptive shape-morphing microrobots for localized cancer cell treatment[J]. ACS Nano, 15, 18048-18059(2021).

    [73] Hu X Y, Ma Z C, Han B et al. Femtosecond laser fabrication of protein-based smart soft actuators[J]. Chinese Journal of Lasers, 48, 1402001(2021).

    [74] Jin D D, Chen Q Y, Huang T Y et al. Four-dimensional direct laser writing of reconfigurable compound micromachines[J]. Materials Today, 32, 19-25(2020).

    [75] Chen Q Y, Lü P Y, Huang T Y et al. Encoding smart microjoints for microcrawlers with enhanced locomotion[J]. Advanced Intelligent Systems, 2, 1900128(2020).

    [76] Li R, Jin D D, Pan D et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond Bessel beam for in situ particle and cell manipulation[J]. ACS Nano, 14, 5233-5242(2020).

    [77] Lao Z X, Sun R, Jin D D et al. Encryption/decryption and microtarget capturing by pH-driven Janus microstructures fabricated by the same femtosecond laser printing parameters[J]. International Journal of Extreme Manufacturing, 3, 025001(2021).

    [78] Ma Z C, Zhang Y L, Han B et al. Femtosecond laser programmed artificial musculoskeletal systems[J]. Nature Communications, 11, 4536(2020).

    [79] Haq M A, Su Y L, Wang D J. Mechanical properties of PNIPAM based hydrogels: a review[J]. Materials Science and Engineering: C, 70, 842-855(2017).

    [80] Tudor A, Delaney C, Zhang H R et al. Fabrication of soft, stimulus-responsive structures with sub-micron resolution via two-photon polymerization of poly(ionic liquid)s[J]. Materials Today, 21, 807-816(2018).

    [81] Münchinger A, Hahn V, Beutel D et al. Multi-photon 4D printing of complex liquid crystalline microstructures by in situ alignment using electric fields[J]. Advanced Materials Technologies, 7, 2100944(2022).

    [82] Zhang M L, Guo J C, Yu Y et al. 3D nanofabrication via chemo-mechanical transformation of nanocrystal/bulk heterostructures[J]. Advanced Materials, 30, e1800233(2018).

    [83] Ji Q X, Moughames J, Chen X Y et al. 4D thermomechanical metamaterials for soft microrobotics[J]. Communications Materials, 2, 93(2021).

    [84] Hippler M, Blasco E, Qu J Y et al. Controlling the shape of 3D microstructures by temperature and light[J]. Nature Communications, 10, 232(2019).

    [85] Nishiguchi A, Zhang H, Schweizerhof S et al. 4D printing of a light-driven soft actuator with programmed printing density[J]. ACS Applied Materials & Interfaces, 12, 12176-12185(2020).

    [86] Zheng C L, Jin F, Zhao Y Y et al. Light-driven micron-scale 3D hydrogel actuator produced by two-photon polymerization microfabrication[J]. Sensors and Actuators B: Chemical, 304, 127345(2020).

    [87] Chen L, Dong Y Q, Tang C Y et al. Development of direct-laser-printable light-powered nanocomposites[J]. ACS Applied Materials & Interfaces, 11, 19541-19553(2019).

    [88] Liu J W, Fan X H, Tao Y F et al. Two-step freezing polymerization method for efficient synthesis of high-performance stimuli-responsive hydrogels[J]. ACS Omega, 5, 5921-5930(2020).

    [89] Palagi S, Mark A G, Reigh S Y et al. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots[J]. Nature Materials, 15, 647-653(2016).

    [90] Martella D, Antonioli D, Nocentini S et al. Light activated non-reciprocal motion in liquid crystalline networks by designed microactuator architecture[J]. RSC Advances, 7, 19940-19947(2017).

    [91] Pan D, Wu D, Li P J et al. Transparent light-driven hydrogel actuator based on photothermal Marangoni effect and buoyancy flow for three-dimensional motion[J]. Advanced Functional Materials, 31, 2009386(2021).

    [92] Gao H, Wang Y X, Fan X H et al. Dynamic 3D meta-holography in visible range with large frame number and high frame rate[J]. Science Advances, 6, eaba8595(2020).

    [93] Dong M, Wang X P, Chen X Z et al. 3D-printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells[J]. Advanced Functional Materials, 30, 1910323(2020).

    [94] Dillinger C, Nama N, Ahmed D. Ultrasound-activated ciliary bands for microrobotic systems inspired by starfish[J]. Nature Communications, 12, 6455(2021).

    [95] Zheng Z Q, Wang H P, Dong L X et al. Ionic shape-morphing microrobotic end-effectors for environmentally adaptive targeting, releasing, and sampling[J]. Nature Communications, 12, 411(2021).

    [96] Nocentini S, Martella D, Parmeggiani C et al. Structured optical materials controlled by light[J]. Advanced Optical Materials, 6, 1800167(2018).

    [97] Woska S, Münchinger A, Beutel D et al. Tunable photonic devices by 3D laser printing of liquid crystal elastomers[J]. Optical Materials Express, 10, 2928-2943(2020).

    [98] Wang J, Hu Y, Deng R et al. Multiresponsive hydrogel photonic crystal microparticles with inverse-opal structure[J]. Langmuir, 29, 8825-8834(2013).

    [99] Zola R S, Bisoyi H K, Wang H et al. Dynamic control of light direction enabled by stimuli-responsive liquid crystal gratings[J]. Advanced Materials, 31, e1806172(2019).

    [100] Nocentini S, Riboli F, Burresi M et al. Three-dimensional photonic circuits in rigid and soft polymers tunable by light[J]. ACS Photonics, 5, 3222-3230(2018).

    Tools

    Get Citation

    Copy Citation Text

    Mingduo Zhang, Chunsan Deng, Xuhao Fan, Zexu Zhang, Ajun Chen, Yufeng Tao, Yuncheng Liu, Binzhang Jiao, Hui Gao, Wei Xiong. Recent Advances in Micro/Nano 4D Printing[J]. Chinese Journal of Lasers, 2022, 49(10): 1002701

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Dec. 6, 2021

    Accepted: Jan. 20, 2022

    Published Online: May. 12, 2022

    The Author Email: Xiong Wei (weixiong@hust.edu.cn)

    DOI:10.3788/CJL202249.1002701

    Topics