Acta Optica Sinica, Volume. 43, Issue 20, 2028001(2023)
Lidar SLAM Algorithm Based on Online Point Cloud Removal in Pseudo Occupied Area
[1] Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): part Ⅱ[J]. IEEE Robotics & Automation Magazine, 13, 108-117(2006).
[2] Cadena C, Carlone L, Carrillo H et al. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age[J]. IEEE Transactions on Robotics, 32, 1309-1332(2016).
[3] Fuentes-Pacheco J, Ruiz-Ascencio J, Rendón-Mancha J M. Visual simultaneous localization and mapping: a survey[J]. Artificial Intelligence Review, 43, 55-81(2015).
[4] Zhou Z G, Cao J W, Di S F. Overview of 3D lidar SLAM algorithms[J]. Chinese Journal of Scientific Instrument, 42, 13-27(2021).
[5] Wang Z L, Li W Y. Moving objects tracking and SLAM method based on point cloud segmentation[J]. Robot, 43, 177-192(2021).
[6] Besl P J, McKay N D. A method for registration of 3D shapes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239-256(1992).
[7] Deschaud J E. IMLS-SLAM: scan-to-model matching based on 3D data[C], 2480-2485(2018).
[8] Zhang J, Singh S. Low-drift and real-time lidar odometry and mapping[J]. Autonomous Robots, 41, 401-416(2017).
[9] Shan T X, Englot B. LeGO-LOAM: lightweight and ground-optimized lidar odometry and mapping on variable terrain[C], 4758-4765(2019).
[10] Zhou P W, Guo X X, Pei X F et al. T-LOAM: truncated least Squares LiDAR-only odometry and mapping in real time[J]. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-13(2022).
[11] Wang H, Wang C, Chen C L et al. F-LOAM: fast LiDAR odometry and mapping[C], 4390-4396(2021).
[12] Chang Y H, Chen N S, Rao L et al. Lidar point cloud descriptor with rotation and translation invariance in dynamic environment[J]. Acta Optica Sinica, 42, 2401007(2022).
[13] Xu C, Zhou Y J, Luo C. Visual SLAM method based on optical flow and instance segmentation in dynamic scene[J]. Acta Optica Sinica, 42, 1415002(2022).
[14] Zhang L, Xu X B, Cao C F et al. Robot pose estimation method based on image and point cloud fusion with dynamic feature elimination[J]. Chinese Journal of Lasers, 49, 0610001(2022).
[15] Chen G B, Wang B S, Wang X L et al. PSF-LO: parameterized semantic features based lidar odometry[C], 5056-5062(2021).
[16] Chen X, Milioto A, Palazzolo E et al. SuMa: efficient LiDAR-based semantic SLAM[C], 4530-4537(2020).
[17] Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C], 560-565(2010).
[18] Pagad S, Agarwal D, Narayanan S et al. Robust method for removing dynamic objects from point clouds[C], 10765-10771(2020).
[19] Lim H, Hwang S, Myung H. ERASOR: egocentric ratio of pseudo occupancy-based dynamic object removal for static 3D point cloud map building[J]. IEEE Robotics and Automation Letters, 6, 2272-2279(2021).
[20] Geiger A, Lenz P, Stiller C et al. Vision meets robotics: the KITTI dataset[J]. International Journal of Robotics Research, 32, 1231-1237(2013).
[21] Chen Y B, Huang S D, Zhao L et al. Cramér-Rao bounds and optimal design metrics for pose-graph SLAM[J]. IEEE Transactions on Robotics, 37, 627-641(2021).
[22] Kim G, Kim A. Remove, then Revert: static point cloud map construction using multiresolution range images[C], 10758-10765(2020).
[23] Guo H L, Zhu J K, Chen Y P. E-LOAM: LiDAR odometry and mapping with expanded local structural information[J]. IEEE Transactions on Intelligent Vehicles, 8, 1911-1921(2023).
[24] Chen S B, Ma H, Jiang C H et al. NDT-LOAM: a real-time lidar odometry and mapping with weighted NDT and LFA[J]. IEEE Sensors Journal, 22, 3660-3671(2022).
Get Citation
Copy Citation Text
Qingxuan Zeng, Qiang Li, Weizhi Nie. Lidar SLAM Algorithm Based on Online Point Cloud Removal in Pseudo Occupied Area[J]. Acta Optica Sinica, 2023, 43(20): 2028001
Category: Remote Sensing and Sensors
Received: Apr. 18, 2023
Accepted: May. 19, 2023
Published Online: Oct. 23, 2023
The Author Email: Li Qiang (liqiang@tju.edu.cn)