Chinese Optics, Volume. 15, Issue 4, 625(2022)

The principle, performance characterization and research progress of nonlinear optical limiting materials

Ze LV1,4, You FANG1,4, Tiao FENG3,4, Nan ZONG1,2、*, Yun-fei LI3、*, Shen-jin ZHANG1,2、*, Zheng XIE3, and Qin-jun PENG1,2
Author Affiliations
  • 1Key Laboratory oF Solid State Laser, Institute of Physical and Chemical Technology, Chinese Academy of Sciences, Beijing 100190, China
  • 2Key Laboratory of Functional Crystal and Laser Technology, Institute of Physical and Chemical Technology, Chinese Academy of Sciences, Beijing 100190, China
  • 3Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Institute of Physics and Chemistry Technology, Chinese Academy of Sciences, Beijing 100190, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(92)

    [1] HAN W G, YAN F P, FENG T, . High-power thulium-doped fiber laser and its application in biological tissue cutting[J]. Chinese Journal of Luminescence, 42, 708-716(2021).

    [2] ZHOU G J, WONG W Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials[J]. Chemical Society Reviews, 40, 2541-2566(2011).

    [3] ZHU J P, MA ZH, GAO L H, . Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 10, 578-587(2017).

    [4] CHEN Y, HANACK M, AEAKI Y, et al. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting[J]. Chemical Society reviews, 34, 517-529(2005).

    [5] ZHANG L, WANG L. Recent research progress on optical limiting property of materials based on phthalocyanine, its derivatives, and carbon nanotubes[J]. Journal of Materials Science, 43, 5692-5701(2008).

    [6] WANG J, CHEN Y, BLAN W J. Carbon nanotubes and nanotube composites for nonlinear optical devices[J]. Journal of Materials Chemistry, 19, 7425-7443(2009).

    [7] HIRATA S, TOTANI K, YAMASHITA T, et al. Large reverse saturable absorption under weak continuous incoherent light[J]. Nature Materials, 13, 938-946(2014).

    [8] RAHMAN S, MIRZA S, SARKAR A, et al. Design and evaluation of carbon nanotube based optical power limiting materials[J]. Journal of Nanoscience and Nanotechnology, 10, 4805-4823(2010).

    [9] TUTT L W, BOGGESS T F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials[J]. Progress in Quantum Electronics, 17, 299-338(1993).

    [10] WANG Y, LV M ZH, GUO J, et al. Carbon-based optical limiting materials[J]. Science China Chemistry, 58, 1782-1791(2015).

    [11] [11] LUO M H. Studies on the hazards of the laser to the human eyes protective materials[D]. Harbin: Ntheast Festry University, 2019. (in Chinese)

    [12] [12] JIANG X. Design research on optical limiting material based on pphyrins poly (aryl ether ketones)[D]. Changchun: Jilin University, 2013. (in Chinese)

    [13] SHEIK-BAHAE M, SAID A A, STRYLAND E. High-sensitivity single-beam n2 measurements[J]. Optics Letters, 14, 955-957(1989).

    [14] CHENG Y, HAO H, XIAO H, et al. Third-order nonlinear optical properties of two novel fullerene derivatives[J]. Journal of Physics B Atomic Molecular & Optical Physics, 42, 235401(2009).

    [15] YU X L, CAO CH B, ZHU H S, et al. Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties[J]. Advanced Functional Materials, 17, 1397-1401(2010).

    [16] ABD-LEFDIL M, BELAYACHI A, PRAMODINI S, et al. Structural, photoinduced optical effects and third-order nonlinear optical studies on Mn doped and Mn-Al codoped ZnO thin films under continuous wave laser irradiation[J]. Laser Physics, 24, 035404(2014).

    [17] LIU Y, LI X, WANG E Z, et al. Exceptional size-dependent property of TiS2 nanosheets for optical limiting[J]. Applied Surface Science, 541, 148371(2021).

    [18] TOLBIN A Y, SAVELYEV M S, GERASIMENKO A Y, et al. Thermally stable J-type phthalocyanine dimers as new non-linear absorbers for low-threshold optical limiters[J]. Physical Chemistry Chemical Physics, 18, 15964-15971(2016).

    [19] LI ZH G, HE CH Y, SONG W N, et al. Optical limiting properties of hybrid nickel naphthalocyanine-titania nanoparticals thin films[J]. Optics & Laser Technology, 112, 413-419(2019).

    [20] DARWISH A A A, HELALI S, QASHOU S I, et al. Studying the surface morphology, linear and nonlinear optical properties of manganese (III) phthalocyanine chloride/FTO films[J]. Physica B:Condensed Matter, 622, 413355(2021).

    [21] DINI D, CALVETE M J F, HANACK M. Nonlinear optical materials for the smart filtering of optical radiation[J]. Chemical Reviews, 116, 13043-13233(2016).

    [22] TUTT L W, KOST A. Optical limiting performance of C60 and C70 solutions[J]. Nature, 356, 225-226(1992).

    [23] SUN X, YU R Q, XU G Q, et al. Broadband optical limiting with multiwalled carbon nanotubes[J]. Applied Physics Letters, 73, 3632-3634(1998).

    [24] LIU ZH W, ZHANG B, CHEN Y. Two-dimensional nanomaterials and their derivatives for laser protection[J]. Acta Physica Sinica, 69, 184201(2020).

    [25] XING F Y, WANG J J, WANG ZH, et al. Covalently silane-functionalized antimonene nanosheets and their copolymerized gel glasses for broadband vis–NIR optical limiting[J]. ACS Applied Materials & Interfaces, 13, 897-903(2021).

    [26] LIU ZH W, ZHANG B, DONG N N, et al. Perfluorinated gallium phthalocyanine axially grafted black phosphorus nanosheets for optical limiting[J]. Journal of Materials Chemistry C, 8, 10197-10203(2020).

    [27] BAI R X, YANG J H, WEI D H, . Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 69, 184211(2020).

    [28] STEIER W H, KUMAR J, ZIARI M. Infrared power limiting and self-switching in CdTe[J]. Applied Physics Letters, 53, 840-841(1988).

    [29] KAVITHA M K, HARIPADMAM P C, GOPINATH P, et al. Effect of morphology and solvent on two-photon absorption of nano zinc oxide[J]. Materials Research Bulletin, 48, 1967-1971(2013).

    [30] SHKIR M, SHAIKH S S, ALFAIFY S. An investigation on optical-nonlinear and optical limiting properties of CdS: an effect of Te doping concentrations for optoelectronic applications[J]. Journal of Materials Science:Materials in Electronics, 30, 17469-17480(2019).

    [31] CALVETE M J F, DINI D. Conjugated macrocyclic materials with photoactivated optical absorption for the control of energy transmission delivered by pulsed radiations[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 35, 56-73(2018).

    [32] BLAU W, BYRNE H, DENNIS W M, et al. Reverse saturable absorption in tetraphenylporphyrins[J]. Optics Communications, 56, 25-29(1985).

    [33] BONNETT R, HARRIMAN A, KOZYREV A N. Photophysics of halogenated porphyrins[J]. Journal of the Chemical Society, Faraday Transactions, 88, 763-769(1992).

    [34] MCEWAN K J, ROBERTSON J M, WYLIE A P, et al. Non-linear optical characteristics of novel porphyrin dye media[J]. MRS Online Proceedings Library, 479, 29-40(1997).

    [35] MANAGA M, MGIDLANA S, KHENE S, et al. Optical limiting properties of indium 5, 10, 15, 20-tetrakis(4-aminophenyl) porphyrin covalently linked to semiconductor quantum dots[J]. Inorganica Chimica Acta, 511, 119838(2020).

    [36] LIU ZH W, ZHANG B, HUANG Y L, et al. Ether-linked porphyrin covalent organic framework with broadband optical switch[J]. iScience, 24, 102526(2021).

    [37] CHEN S H, QIN ZH H, LIU T F, et al. Aggregation-induced emission on benzothiadiazole dyads with large third-order optical nonlinearity[J]. Physical Chemistry Chemical Physics, 15, 12660-12666(2013).

    [38] SUN J B, LIU Z T, YAN CH X, et al. Efficient construction of near-infrared absorption donor–acceptor copolymers with and without Pt (II)-incorporation toward broadband nonlinear optical materials[J]. ACS Applied Materials & Interfaces, 12, 2944-2951(2020).

    [39] XIE ZH, HE H F, DENG Y H, et al. Three-arm star compounds composed of 1, 3, 5-tri(azobenzeneethynyl)benzene cores and flexible PEO arms: synthesis, optical functions, hybrid Ormosil gel glasses[J]. Journal of Materials Chemistry C, 1, 1791-1797(2013).

    [40] ZHU F, XIAO ZH S, ZHOU B, . Progress in preparation and luminescence of β-FeSi2 thin films[J]. Chinese Journal of Optics and Applied Optics, 2, 119-125(2009).

    [41] ZHANG CH, SONG Y L, WANG X. Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study[J]. Coordination Chemistry Reviews, 251, 111-141(2007).

    [42] DHONI M S, JI W. Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures[J]. The Journal of Physical Chemistry C, 115, 20359-20366(2011).

    [43] KULYK B, WASZKOWSKA K, BUSSEAU A, et al. Penta(zinc porphyrin)[60]fullerenes: Strong reverse saturable absorption for optical limiting applications[J]. Applied Surface Science, 533, 147468(2020).

    [44] KAUSAR A. Advances in polymer/fullerene nanocomposite: a review on essential features and applications[J]. Polymer-Plastics Technology and Engineering, 56, 594-605(2017).

    [45] ZHANG X L, LIU ZH B, YAN X Q, et al. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups[J]. Journal of Optics, 17, 015501(2015).

    [46] LAMY-MENDES A, SILVA R F, DURÃES L. Advances in carbon nanostructure-silica aerogel composites: a review[J]. Journal of Materials Chemistry A, 6, 1340-1369(2018).

    [47] XIONG Y B, SI J H, YAN L H, et al. The influence of nonlinear scattering light distributions on the optical limiting properties of carbon nanotubes[J]. Laser Physics Letters, 11, 115904(2014).

    [48] CHEN K, SU W H, WANG Y, et al. Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance[J]. Journal of Materials Chemistry C, 6, 7311-7316(2018).

    [49] SAVELYEV M S, GERASIMENKO A Y, PODGAETSKII V M, et al. Conjugates of thermally stable phthalocyanine J-type dimers with single-walled carbon nanotubes for enhanced optical limiting applications[J]. Optics & Laser Technology, 117, 272-279(2019).

    [50] CHIN K C, GOHEL A, ELIM H I, et al. Modified carbon nanotubes as broadband optical limiting nanomaterials[J]. Journal of Materials Research, 21, 2758-2766(2006).

    [51] HAN J, GAO Y, JIAO W Y, . Mid-infrared plasmon regulation based on graphene nanoribbons[J]. Chinese Optics, 13, 627-636(2020).

    [52] FENG M, ZHAN H B, CHEN Y. Nonlinear optical and optical limiting properties of graphene families[J]. Applied Physics Letters, 96, 033107(2010).

    [53] CHEN J, MENG W CH, LING X, . Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging[J]. Chinese Optics, 11, 377-391(2018).

    [54] LIU ZH B, WANG Y, ZHANG X L, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 94, 021902(2009).

    [55] LI Y X, ZHU J H, CHEN Y, et al. Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine[J]. Nanotechnology, 22, 205704(2011).

    [56] ZHANG X L, WANG L, LI D, . PbSe based core/shell quantum dots: from colloidal synthesis to optoelectronic application[J]. Chinese Journal of Luminescence, 41, 631-645(2020).

    [57] WANG J T, HUANG Q ZH, GAO J Q, . Size and temperature dependence of spectral transmittance for CdSe colloidal quantum dot film filters[J]. Chinese Optics, 14, 163-169(2021).

    [58] ZHAO M, PENG R, ZHENG Q, et al. Broadband optical limiting response of a graphene–PbS nanohybrid[J]. Nanoscale, 7, 9268-9274(2015).

    [59] LIU R, HU J Y, ZHU S Q, et al. Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes[J]. ACS Applied Materials & Interfaces, 9, 33029-33040(2017).

    [60] DU Y L, DONG N N, ZHANG M H, et al. Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting[J]. Physical Chemistry Chemical Physics, 19, 2252-2260(2017).

    [61] WANG A J, SHEN X L, WANG Q, et al. Enhanced optical limiting and hydrogen evolution of graphene oxide nanohybrids covalently functionalized by covalent organic polymer based on porphyrin[J]. Dalton Transactions, 50, 7007-7016(2021).

    [62] BAI T, LI C Q, SUN J, et al. Covalent modification of graphene oxide with carbazole groups for laser protection[J]. Chemistry-A European Journal, 21, 4622-4627(2015).

    [63] LIU K P, SUN J, ZHANG H K, . Synthesis and photoelectronic properties of novel high-efficiency bipolar phosphorescent host material[J]. Chinese Journal of Luminescence, 41, 1383-1390(2020).

    [64] CHEN ZH X, WANG W B, LIANG CH, . Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 14, 1-17(2021).

    [65] WU J Q, WEI Y, SHEN W L, et al. Antimonene nanosheets fabricated by laser irradiation technique with outstanding nonlinear absorption responses[J]. Applied Physics Letters, 116, 261903(2020).

    [66] LIU Q R, HU S Y, ZHANG CH X, et al. Polarization-dependent and wavelength-tunable optical limiting and transparency of multilayer selenium-doped black phosphorus[J]. Advanced Optical Materials, 9, 2001562(2021).

    [67] El-MONGY S A, MOHAMMED M I, YAHIA I S. Preparation and spectroscopic studies of PbI2-doped poly (methyl methacrylate) nanocomposites films: dielectric and optical limiting approach[J]. Optical Materials, 100, 109626(2020).

    [68] LIAO Q B, ZHANG Q, WANG X L, et al. Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties[J]. Composites Science and Technology, 165, 388-396(2018).

    [69] GANESHA K V S, MAIDUR S R, PATIL P S, et al. Role of copper dopant in two-photon absorption and nonlinear optical properties of sprayed ZnS thin films for optical limiting applications[J]. Physics Letters A, 398, 127276(2021).

    [70] SANUSI K, NYOKONG T. Enhanced optical limiting behaviour of indium phthalocyanine derivatives when in solution or embedded in poly (acrylic acid) or poly (methyl methacrylate) polymers[J]. Journal of Photochemistry and Photobiology A:Chemistry, 303-304, 44-52(2015).

    [71] El-ZAIDIA E F M, QASHOU S I, DARWISH A A A, et al. Thermally evaporated of homogeneous nanostructured gallium-phthalocyanine-chloride films: optical spectroscopy[J]. Optical Materials, 109, 110407(2020).

    [72] DARWISH A A A, HAMDALLA T A, El-ZAIDIA E F M, et al. Thin films of nanostructured gallium (III) chloride phthalocyanine deposited on FTO: structural characterization, optical properties, and laser optical limiting[J]. Physica B:Condensed Matter, 539, 412321(2020).

    [73] INNOCENZI P, BRUSATIN G. Fullerene-based organic−inorganic nanocomposites and their applications[J]. Chemistry of Materials, 13, 3126-3139(2001).

    [74] XIA H P, ZHU C SH, GONG H, . Diffusion of C60 in porous silica glass and its optical limiting effect[J]. Chinese Journal of Lasers, 22, 701-704(1995).

    [75] MORALES-SAAVEDRA O G, CASTAÑEDA R, BAÑUELOS J G, et al. Preparation of fullerene (C60) based SiO2 sonogel hybrid composites: UV laser induced photo-polymerization, morphological, and optical properties[J]. Journal of Nanoscience and Nanotechnology, 8, 3582-3594(2008).

    [76] HUANG S T, ZHANG B, CHEN Y. Synthesis and nonlinear optical performance of triphenylamine-fluorene copolymer covalently bridged [60]fullerene triad[J]. Journal of Functional Polymers, 33, 441-451(2020).

    [77] ZHENG X, CHEN R Z, SHI G, et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements[J]. Optics Letters, 40, 3480-3483(2015).

    [78] SHI M K, HUANG SH T, DONG N N, et al. Donor–acceptor type blends composed of black phosphorus and C60 for solid-state optical limiters[J]. Chemical Communications, 54, 366-369(2018).

    [79] ALI H E, ALGARNI H, YAHIA I S, et al. Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene[J]. Chinese Journal of Physics, 72, 270-285(2021).

    [80] ZHAN H B, CHEN W ZH, WANG M Q, et al. Optical limiting effects of multi-walled carbon nanotubes suspension and silica xerogel composite[J]. Chemical Physics Letters, 382, 313-317(2003).

    [81] ZHANG X L, LIU ZH B, ZHAO X, et al. Optical limiting effect and ultrafast saturable absorption in a solid PMMA composite containing porphyrin-covalently functionalized multi-walled carbon nanotubes[J]. Optics Express, 21, 25277-25284(2013).

    [82] SEKHOSANA K E, NYOKONG T. Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid)[J]. Journal of Molecular Structure, 1117, 140-146(2016).

    [83] YUKSEK M, KAYA E Ç, KARABULUTLU N, et al. Enhancing of the nonlinear absorption and optical limiting performances of the phthalocyanine thin films by adding of the single walled carbon nanotubes in poly (methyl methacrylate) host[J]. Optical Materials, 91, 326-332(2019).

    [84] LI P L, WANG Y H, SHANG M, et al. Enhanced optical limiting properties of graphene oxide-ZnS nanoparticles composites[J]. Carbon, 159, 1-8(2020).

    [85] SU X X, YANG R, LI L, . Research Progress of Preparation of Nitrogen-doped Graphene and Its Application in Chemical Energy Storage[J]. Chinese Journal of Applied Chemistry, 35, 137-146(2018).

    [86] LU J J, FENG M, ZHAN H B. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect[J]. Acta Physica Sinica, 62, 014204(2013).

    [87] GAN Y, FENG M, ZHAN H B. Enhanced optical limiting effects of graphene materials in polyimide[J]. Applied Physics Letters, 104, 171105(2014).

    [88] PAN R, GUO J, WANG T, et al. Optical limiting properties of graphene/polymer composites[J]. Journal of Nanoscience and Nanotechnology, 16, 3632-3635(2016).

    [89] MURALIDHARAN M N, MATHEW S, SEEMA A, et al. Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites[J]. Materials Chemistry and Physics, 171, 367-373(2016).

    [90] SABIRA K, SAHEEDA P, DIVYASREE M C, et al. Impressive nonlinear optical response exhibited by Poly (vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films[J]. Optics & Laser Technology, 97, 77-83(2017).

    [91] ZHENG X Q, FENG M, LI ZH G, et al. Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices[J]. Journal of Materials Chemistry C, 2, 4121-4125(2014).

    [92] SUN X M, HU X J, SUN J B, et al. Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses[J]. Advanced Composites and Hybrid Materials, 1, 397-403(2018).

    Tools

    Get Citation

    Copy Citation Text

    Ze LV, You FANG, Tiao FENG, Nan ZONG, Yun-fei LI, Shen-jin ZHANG, Zheng XIE, Qin-jun PENG. The principle, performance characterization and research progress of nonlinear optical limiting materials[J]. Chinese Optics, 2022, 15(4): 625

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Nov. 8, 2021

    Accepted: Jan. 24, 2022

    Published Online: Sep. 6, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0195

    Topics