Acta Optica Sinica, Volume. 42, Issue 24, 2410002(2022)

Synthetic Aperture Radar and Optical Images Registration Based on Convolutional and Graph Neural Networks

Lei Liu, Yuanxiang Li*, Runsheng Ni, Yuxuan Zhang, Yilin Wang, and Zongcheng Zuo
Author Affiliations
  • School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    References(23)

    [1] Xie Z H, Liu J H, Sun H et al. Fast registration of visible light and synthetic aperture radar images[J]. Laser & Optoelectronics Progress, 57, 062803(2020).

    [2] Li J Y, Hu Q W, Ai M Y. RIFT: multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing, 29, 3296-3310(2020).

    [3] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 60, 91-110(2004).

    [4] Rublee E, Rabaud V, Konolige K et al. ORB: an efficient alternative to SIFT or SURF[C], 2564-2571(2011).

    [5] Suri S, Reinartz P. Mutual-information-based registration of TerraSAR-X and Ikonos imagery in urban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 48, 939-949(2010).

    [6] Xiang Y M, Wang F, You H J. OS-SIFT: a robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 3078-3090(2018).

    [7] Kovesi P. Phase congruency detects corners and edges[C], 309-318(2003).

    [8] Ye Y X, Shan J, Bruzzone L et al. Robust registration of multimodal remote sensing images based on structural similarity[J]. IEEE Transactions on Geoscience and Remote Sensing, 55, 2941-2958(2017).

    [9] Li Z Y, Zhang H T, Huang Y H. A rotation-invariant optical and SAR image registration algorithm based on deep and Gaussian features[J]. Remote Sensing, 13, 2628(2021).

    [10] Sun M C, Ma T X, Song Y M et al. Automatic registration of optical and SAR remote sensing image based on phase feature[J]. Optics and Precision Engineering, 29, 616-627(2021).

    [11] Li Z Y, Zhao W W, Yu X Q et al. Registration of heterologous images based on maximum phase index map[J]. Chinese Journal of Lasers, 48, 1509002(2021).

    [12] Zhang J, Ma W P, Wu Y et al. Multimodal remote sensing image registration based on image transfer and local features[J]. IEEE Geoscience and Remote Sensing Letters, 16, 1210-1214(2019).

    [13] Toriya H, Dewan A, Kitahara I. SAR2OPT: image alignment between multi-modal images using generative adversarial networks[C], 923-926(2019).

    [14] Hughes L H, Schmitt M, Mou L C et al. Identifying corresponding patches in SAR and optical images with a pseudo-siamese CNN[J]. IEEE Geoscience and Remote Sensing Letters, 15, 784-788(2018).

    [15] Zhang H, Ni W P, Yan W D et al. Registration of multimodal remote sensing image based on deep fully convolutional neural network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 3028-3042(2019).

    [16] DeTone D, Malisiewicz T, Rabinovich A. SuperPoint: self-supervised interest point detection and description[C], 337-349(2018).

    [17] Dusmanu M, Rocco I, Pajdla T et al. D2-net: a trainable CNN for joint description and detection of local features[C], 8084-8093(2019).

    [18] Lan C Z, Lu W J, Yu J M et al. Deep learning algorithm for feature matching of cross modality remote sensing images[J]. Acta Geodaetica et Cartographica Sinica, 50, 189-202(2021).

    [19] Luo Z X, Shen T W, Zhou L et al. ContextDesc: local descriptor augmentation with cross-modality context[C], 2522-2531(2019).

    [20] Sarlin P E, DeTone D, Malisiewicz T et al. SuperGlue: learning feature matching with graph neural networks[C], 4937-4946(2020).

    [22] Sinkhorn R, Knopp P. Concerning nonnegative matrices and doubly stochastic matrices[J]. Pacific Journal of Mathematics, 21, 343-348(1967).

    [23] WangR Z, YanJ C, YangX K. Learning combinatorial embedding networks for deep graph matching[C], 3056-3065(2019).

    Tools

    Get Citation

    Copy Citation Text

    Lei Liu, Yuanxiang Li, Runsheng Ni, Yuxuan Zhang, Yilin Wang, Zongcheng Zuo. Synthetic Aperture Radar and Optical Images Registration Based on Convolutional and Graph Neural Networks[J]. Acta Optica Sinica, 2022, 42(24): 2410002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Apr. 18, 2022

    Accepted: Jul. 11, 2022

    Published Online: Dec. 14, 2022

    The Author Email: Li Yuanxiang (yuanxli@sjtu.edu.cn)

    DOI:10.3788/AOS202242.2410002

    Topics