Acta Optica Sinica, Volume. 42, Issue 24, 2410002(2022)
Synthetic Aperture Radar and Optical Images Registration Based on Convolutional and Graph Neural Networks
Fig. 5. Matching matrix. (a) Ground truth generation; (b) prediction and loss calculation
Fig. 6. Results of feature point detection. (a) Original image; (b) ORB; (c) SIFT; (d) D2Net; (e) RIFT; (f) SuperPoint
Fig. 7. Matching results of shift invariance experiment. (a) OS-SIFT; (b) SuperPoint; (c) D2Net; (d) CMM-Net; (e) RIFT; (f) proposed CGNet
Fig. 8. Matching and registration results in rotation invariance experiment. (a) Matching result of 150° rotation; (b) registration result of 150° rotation; (c) matching result of 210° rotation; (d) registration result of 210° rotation
Fig. 9. Matching results in scaling and rigid transformation. (a) Scaling scale of 0.75; (b) scaling scale of 0.6; (c) random rigid transformation 1; (d) random rigid transformation 2
|
|
|
|
|
|
Get Citation
Copy Citation Text
Lei Liu, Yuanxiang Li, Runsheng Ni, Yuxuan Zhang, Yilin Wang, Zongcheng Zuo. Synthetic Aperture Radar and Optical Images Registration Based on Convolutional and Graph Neural Networks[J]. Acta Optica Sinica, 2022, 42(24): 2410002
Category: Image Processing
Received: Apr. 18, 2022
Accepted: Jul. 11, 2022
Published Online: Dec. 14, 2022
The Author Email: Li Yuanxiang (yuanxli@sjtu.edu.cn)