Opto-Electronic Engineering, Volume. 50, Issue 7, 230086(2023)

Inverse-designed silicon-based on-chip power splitters

Hansi Ma1,2, Te Du1, Xinpeng Jiang1, and Junbo Yang1、*
Author Affiliations
  • 1Center of Material Science, National University of Defense Technology, Changsha, Hunan 410073, China
  • 2Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha, Hunan 410073, China
  • show less
    References(109)

    [1] Chen Y, Cheng Y K, Zhu R B et al. Nanoscale all-optical logic devices[J]. Sci China Phys Mech Astron, 62, 44201(2019).

    [2] Reed G T, Mashanovich G, Gardes F Y et al. Silicon optical modulators[J]. Nat Photonics, 4, 518-526(2010).

    [3] Subbaraman H, Xu X C, Hosseini A et al. Recent advances in silicon-based passive and active optical interconnects[J]. Opt Express, 23, 2487-2511(2015).

    [4] Soref R A, Lorenzo J P. Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical Components[J]. Electron Lett, 21, 953-955(1985).

    [5] Soref R A, Bennett B R. Electrooptical effects in silicon[J]. IEEE J Quantum Electron, 23, 123-129(1987).

    [6] Soref R A, Bennett B R. Kramers–Kronig analysis of electro-optical switching in silicon[J]. Proc SPIE, 704, 32-37(1987).

    [7] Hochberg M, Baehr-Jones T. Towards fabless silicon photonics[J]. Nat Photonics, 4, 492-494(2010).

    [8] Stojanović V, Ram R J, Popović M et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited][J]. Opt Express, 26, 13106(2018).

    [9] Dong P, Chen Y K, Duan G H et al. Silicon photonic devices and integrated circuits[J]. Nanophotonics, 3, 215-228(2014).

    [10] Zalevsky Z. Integrated micro- and nanophotonic dynamic devices: a review[J]. J Nanophoton, 1, 012504(2007).

    [11] Wang J, Long Y. On-chip silicon photonic signaling and processing: a review[J]. Sci Bull, 63, 1267-1310(2018).

    [12] Xu Q F, Fattal D, Beausoleil R G. Silicon microring resonators with 1.5-μm radius[J]. Opt Express, 16, 4309-4315(2008).

    [13] Chen P X, Chen S T, Guan X W et al. High-order microring resonators with bent couplers for a box-like filter response[J]. Opt Lett, 39, 6304-6307(2014).

    [14] Stern B, Zhu X L, Chen C P et al. On-chip mode-division multiplexing switch[J]. Optica, 2, 530-535(2015).

    [15] Xu Q F, Schmidt B, Pradhan S et al. Micrometre-scale silicon electro-optic modulator[J]. Nature, 435, 325-327(2005).

    [16] Bogaerts W, De Heyn P, van Vaerenbergh T et al. Silicon microring resonators[J]. Laser Photonics Rev, 6, 47-73(2012).

    [17] Ji Y, Chung Y, Sprinzak D et al. An electronic Mach-Zehnder interferometer[J]. Nature, 422, 415-418(2003).

    [18] Shen Y C, Harris N C, Skirlo S et al. Deep learning with coherent nanophotonic circuits[J]. Nat Photonics, 11, 441-446(2017).

    [19] Harris N C, Steinbrecher G R, Prabhu M et al. Quantum transport simulations in a programmable nanophotonic processor[J]. Nat Photonics, 11, 447-452(2017).

    [20] Pérez D, Gasulla I, Crudgington L et al. Multipurpose silicon photonics signal processor core[J]. Nat Commun, 8, 636(2017).

    [21] Xie Y W, Hong S H, Yan H et al. Low-loss chip-scale programmable silicon photonic processor[J]. Opto-Electron Adv, 6, 220030(2023).

    [22] Xiao Z, Luo X S, Lim P H et al. Ultra-compact low loss polarization insensitive silicon waveguide splitter[J]. Opt Express, 21, 16331-16336(2013).

    [23] Uematsu T, Ishizaka Y, Kawaguchi Y et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission[J]. J Lightwave Technol, 30, 2421-2426(2012).

    [24] Li Y M, Li C, Li C B et al. Compact two-mode (de) multiplexer based on symmetric Y-junction and multimode interference waveguides[J]. Opt Express, 22, 5781-5786(2014).

    [25] Han L S, Liang S, Zhu H L et al. Two-mode de/multiplexer based on multimode interference couplers with a tilted joint as phase shifter[J]. Opt Lett, 40, 518-521(2015).

    [26] Li C L, Liu D J, Dai D X. Multimode silicon photonics[J]. Nanophotonics, 8, 227-247(2019).

    [27] Ding Y H, Xu J, Da Ros F et al. On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer[J]. Opt Express, 21, 10376-10382(2013).

    [28] Mohammed Z, Paredes B, Rasras M. Compact and broadband silicon TE-pass polarizer based on tapered directional coupler[J]. Opt Lett, 47, 3399-3402(2022).

    [29] Wang J, He S L, Dai D X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing[J]. Laser Photonics Rev, 8, L18-L22(2014).

    [30] Dai D X, Li C L, Wang S P et al. 10-channel mode (de)multiplexer with dual polarizations[J]. Laser Photonics Rev, 12, 1700109(2018).

    [31] Greenberg M, Orenstein M. Multimode add-drop multiplexing by adiabatic linearly tapered coupling[J]. Opt Express, 13, 9381-9387(2005).

    [32] Dai D X, Bowers J E. Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires[J]. Opt Express, 19, 10940-10949(2011).

    [33] Dai D X, Wu H. Realization of a compact polarization splitter-rotator on silicon[J]. Opt Lett, 41, 2346-2349(2016).

    [34] Sacher W D, Barwicz T, Taylor B J F et al. Polarization rotator-splitters in standard active silicon photonics platforms[J]. Opt Express, 22, 3777-3786(2014).

    [35] Huang J, Ma H S, Chen D B et al. Digital nanophotonics: the highway to the integration of subwavelength-scale photonics: ultra-compact, multi-function nanophotonic design based on computational inverse design[J]. Nanophotonics, 10, 1011-1030(2021).

    [36] Lu J, Vučković J. Nanophotonic computational design[J]. Opt Express, 21, 13351-13367(2013).

    [37] Yao K, Unni R, Zheng Y B. Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale[J]. Nanophotonics, 8, 339-366(2019).

    [38] Ma L F, Li J, Liu Z H et al. Intelligent algorithms: new avenues for designing nanophotonic devices[J]. Chin Opt Lett, 19, 011301(2021).

    [39] Qi H X, Du Z C, Hu X Y et al. High performance integrated photonic circuit based on inverse design method[J]. Opto-Electron Adv, 5, 210061(2022).

    [40] Jiang J Q, Chen M K, Fan J A. Deep neural networks for the evaluation and design of photonic devices[J]. Nat Rev Mater, 6, 679-700(2021).

    [41] So S, Badloe T, Noh J et al. Deep learning enabled inverse design in nanophotonics[J]. Nanophotonics, 9, 1041-1057(2020).

    [42] Ma T G, Tobah M, Wang H Z et al. Benchmarking deep learning-based models on nanophotonic inverse design problems[J]. Opto-Electron Sci, 1, 210012(2022).

    [43] Wang N, Yan W, Qu Y R et al. Intelligent designs in nanophotonics: from optimization towards inverse creation[J]. PhotoniX, 2, 22(2021).

    [44] Huang J, Yang J B, Chen D B et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials[J]. Nanophotonics, 9, 159-166(2020).

    [45] Liu Z H, Liu X H, Xiao Z Y et al. Integrated nanophotonic wavelength router based on an intelligent algorithm[J]. Optica, 6, 1367-1373(2019).

    [46] Khoram E, Qian X P, Yuan M et al. Controlling the minimal feature sizes in adjoint optimization of nanophotonic devices using b-spline surfaces[J]. Opt Express, 28, 7060-7069(2020).

    [47] Han J M, Huang J, Wu J G et al. Inverse designed tunable four-channel wavelength demultiplexer[J]. Opt Commun, 465, 125606(2020).

    [48] Shen B, Wang P, Polson R et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint[J]. Nat Photonics, 9, 378-382(2017).

    [49] Chang W J, Xu S Y, Cheng M F et al. Inverse design of a single-step-etched ultracompact silicon polarization rotator[J]. Opt Express, 28, 28343-28351(2020).

    [50] Ma H S, Du T, Zhang Z J et al. Inverse design of an air-cladding and fully-etched silicon polarization rotator based on a taper-based mode hybridization[J]. Opt Commun, 526, 128912(2023).

    [51] Lu C C, Liu Z H, Wu Y et al. Nanophotonic polarization routers based on an intelligent algorithm[J]. Adv Opt Mater, 8, 1902018(2020).

    [52] Ma H S, Luo M Y, He J et al. Inverse design of nonvolatile reconfigurable mode generator and optical circulator based on a novel concept of a fully-digitized module[J]. J Lightwave Technol, 40, 7869-7878(2022).

    [53] Ren Y M, Zhang L X, Wang W Q et al. Genetic-algorithm-based deep neural networks for highly efficient photonic device design[J]. Photonics Res, 9, B247-B252(2021).

    [54] Zhou H L, Wang Y L, Gao X Y et al. Dielectric metasurfaces enabled ultradensely integrated multidimensional optical system[J]. Laser Photonics Rev, 16, 2100521(2022).

    [55] Xie H C, Liu Y J, Wang S et al. Highly compact and efficient four-mode multiplexer based on pixelated waveguides[J]. IEEE Photonics Technol Lett, 32, 166-169(2020).

    [56] Han H L, Li H, Zhang X P et al. High performance ultra-compact SOI waveguide crossing[J]. Opt Express, 26, 25602-25610(2018).

    [57] Lu L L Z, Zhang M M, Zhou F Y et al. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect[J]. Opt Express, 25, 18355-18364(2017).

    [58] Liu Y J, Xu K, Wang S et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration[J]. Nature Communications, 10, 3263(2019).

    [59] Chang W J, Lu L L Z, Ren X S et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers[J]. Photonics Res, 6, 660-665(2018).

    [60] Ma H S, Huang J, Zhang K W et al. Arbitrary-direction, multichannel and ultra-compact power splitters by inverse design method[J]. Opt Commun, 462, 125329(2020).

    [61] Lu L, Liu D M, Zhou F Y et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures[J]. Opt Lett, 41, 5051-5054(2016).

    [62] Kim J, Kim J Y, Yoon J et al. Experimental demonstration of inverse-designed silicon integrated photonic power splitters[J]. Nanophotonics, 11, 4581-4590(2022).

    [63] Xu K, Liu L, Wen X et al. Integrated photonic power divider with arbitrary power ratios[J]. Opt Lett, 42, 855-858(2017).

    [64] Gamet J, Pandraud G. Ultralow-loss 1 X 8 splitter based on field matching Y junction[J]. IEEE Photonics Technol Lett, 16, 2060-2062(2004).

    [65] Tao S H, Fang Q, Song J F et al. Cascade wide-angle Y-junction 1 × 16 optical power splitter based on silicon wire waveguides on silicon-on-insulator[J]. Opt Express, 16, 21456-21461(2008).

    [66] Luo Y C, Yu Y, Ye M Y et al. Integrated dual-mode 3 dB power coupler based on tapered directional coupler[J]. Sci Rep, 6, 23516(2016).

    [67] Huang W P. Coupled-mode theory for optical waveguides: an overview[J]. J Opt Soc Am A-Opt Image Sci Vis, 11, 963-983(1994).

    [68] Yao R K, Li H X, Zhang B H et al. Compact and low-insertion-loss 1×N power splitter in silicon photonics[J]. J Lightwave Technol, 39, 6253-6259(2021).

    [69] Sheng Z, Wang Z Q, Qiu C et al. A compact and low-Loss MMI coupler fabricated with CMOS technology[J]. IEEE Photonics J, 4, 2272-2277(2012).

    [70] Xie H C, Liu Y J, Wang Y H et al. An ultra-compact 3-dB power splitter for three modes based on pixelated meta-structure[J]. IEEE Photonics Technol Lett, 32, 341-344(2020).

    [71] Wang Z C, Peng Z, Zhang Y Q et al. 93-THz ultra-broadband and ultra-low loss Y-junction photonic power splitter with phased inverse design[J]. Opt Express, 31, 15904-15916(2023).

    [72] Yuan H, Wu J G, Zhang J P et al. Non-volatile programmable ultra-small photonic arbitrary power splitters[J]. Nanomaterials, 12, 669(2022).

    [73] Jiang X P, Yuan H, Chen D B et al. Metasurface based on inverse design for maximizing solar spectral absorption[J]. Adv Opt Mater, 9, 2100575(2021).

    [74] Yu Z J, Cui H R, Sun X K. Genetically optimized on-chip wideband ultracompact reflectors and Fabry–Perot cavities[J]. Photonics Res, 5, B15-B19(2017).

    [75] Zhang Y, Yang S Y, Lim A E J et al. A compact and low loss Y-junction for submicron silicon waveguide[J]. Opt Express, 21, 1310(2013).

    [76] Goudarzi K, Lee M. Inverse design of a binary waveguide crossing by the particle swarm optimization algorithm[J]. Results Phys, 34, 105268(2022).

    [77] Liang W, Chen W W, Wang P J et al. Non-volatile polarization-insensitive 1 × 2 silicon optical switch using phase-change materials[J]. Opt Commun, 479, 126407(2021).

    [78] Peng Z, Feng J B, Du T et al. Series of ultra-low loss and ultra-compact multichannel silicon waveguide crossing[J]. Opt Express, 30, 27366-27380(2022).

    [79] Lalau-Keraly C M, Bhargava S, Miller O D et al. Adjoint shape optimization applied to electromagnetic design[J]. Opt Express, 21, 21693-21701(2013).

    [80] Wang K Y, Ren X S, Chang W J et al. Inverse design of digital nanophotonic devices using the adjoint method[J]. Photonics Res, 8, 528-533(2020).

    [81] Huang J, Yang J B, Chen D B et al. Ultra-compact broadband polarization beam splitter with strong expansibility[J]. Photonics Res, 6, 574-578(2018).

    [82] Michaels A, Yablonovitch E. Leveraging continuous material averaging for inverse electromagnetic design[J]. Opt Express, 26, 31717-31737(2018).

    [83] Lebbe N, Glière A, Hassan K. High-efficiency and broadband photonic polarization rotator based on multilevel shape optimization[J]. Opt Lett, 44, 1960-1963(2019).

    [84] Bendsøe M P, Kikuchi N. Generating optimal topologies in structural design using a homogenization method[J]. Comput Methods Appl Mech Eng, 71, 197-224(1988).

    [85] Wu C M, Yu H S, Lee S et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network[J]. Nat Commun, 12, 96(2021).

    [86] Xu Y H, Ma H S, Xie T et al. Ultra-compact power splitters with low loss in arbitrary direction based on inverse design method[J]. Photonics, 8, 516(2021).

    [88] Fujisawa T, Saitoh K. Bayesian direct-binary-search algorithm for the efficient design of mosaic-based power splitters[J]. OSA Continuum, 4, 1258-1270(2021).

    [89] Tahersima M H, Kojima K, Koike-Akino T et al. Deep neural network inverse design of integrated photonic power splitters[J]. Sci Rep, 9, 1368(2019).

    [91] Guo Z Z, Xiao J B. Silicon-based Ultracompact TE-Pass/TM-Stop power divider using subwavelength gratings assisted with segmented hybrid plasmonic horizontal slot waveguides[J]. J Lightwave Technol, 35, 4329-4336(2017).

    [92] Chen Y F, Zhang J, Zhu M et al. Ultra-compact and broadband all-silicon TM-pass power splitter using subwavelength holey-structured metamaterial waveguides[J]. Opt Express, 30, 44604-44616(2022).

    [93] Liu Y J, Wang Z, Liu Y L et al. Ultra-compact mode-division multiplexed photonic integrated circuit for dual polarizations[J]. J Lightwave Technol, 39, 5925-5932(2021).

    [94] Chen W W, Lin J, Li H X et al. Broadband multimode 3 dB optical power splitter using tapered couplers[J]. Optics Express, 30, 46236-46247(2022).

    [95] Xie H C, Liu Y J, Sun W Z et al. Inversely designed 1×4 power splitter with arbitrary ratios at 2-μm spectral band[J]. IEEE Photonics J, 10, 2700506(2018).

    [97] Xu J F, Liu Y J, Guo X Y et al. Inverse design of a dual-mode 3-dB optical power splitter with a 445 nm bandwidth[J]. Opt Express, 30, 26266-26274(2022).

    [99] Piggott A Y, Lu J, Babinec T M et al. Inverse design and implementation of a wavelength demultiplexing grating coupler[J]. Sci Rep, 4, 7210(2015).

    [100] Ma H S, Huang J, Zhang K W et al. Inverse-designed arbitrary-input and ultra-compact 1 × N power splitters based on high symmetric structure[J]. Sci Rep, 10, 11757(2020).

    [101] Ma H S, Huang J, Yang J B et al. Ultra-compact and efficient 1 × 2 mode converters based on rotatable direct-binary-search algorithm[J]. Opt Express, 28, 17010-17019(2020).

    [102] Yuan H, Huang J, Wang Z H et al. An ultra-compact dual-channel multimode wavelength demultiplexer based on inverse design[J]. Results Phys, 27, 104489(2021).

    [103] Chen H X, Jia H, Wang T et al. Broadband nonvolatile tunable mode-order converter based on silicon and optical phase change materials hybrid meta-structure[J]. J Lightwave Technol, 38, 1874-1879(2020).

    [104] Yuan H, Wang Z C, Peng Z et al. Ultra-compact and nonvolatile nanophotonic neural networks[J]. Adv Opt Mater(2023).

    [105] Su Y X, Liu D M, Zhang M M. Sb2Se3-assisted reconfigurable broadband Y-junction[J]. Opt Express, 30, 40379-40388(2022).

    [106] Chang W J, Lu L L Z, Ren X S et al. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction[J]. Opt Express, 26, 8162-8170(2018).

    [107] Piggott A Y, Petykiewicz J, Su L et al. Fabrication-constrained nanophotonic inverse design[J]. Sci Rep, 7, 1786(2017).

    [108] Liang H B, Soref R, Mu J W et al. Simulations of silicon-on-Insulator channel-waveguide electrooptical 2 × 2 switches and 1 × 1 modulators using a Ge2Sb2Te5 self-holding layer[J]. J Lightwave Technol, 33, 1805-1813(2015).

    [109] Xu P P, Zheng J J, Doylend J K et al. Low-loss and broadband nonvolatile phase-change directional coupler switches[J]. ACS Photonics, 6, 553-557(2019).

    Tools

    Get Citation

    Copy Citation Text

    Hansi Ma, Te Du, Xinpeng Jiang, Junbo Yang. Inverse-designed silicon-based on-chip power splitters[J]. Opto-Electronic Engineering, 2023, 50(7): 230086

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Apr. 17, 2023

    Accepted: Jun. 9, 2023

    Published Online: Sep. 25, 2023

    The Author Email:

    DOI:10.12086/oee.2023.230086

    Topics