Chinese Journal of Lasers, Volume. 50, Issue 15, 1507303(2023)
Fabrication of Curved Micro-Nano Topography Structures and Regulation of Cell Behavior
[1] Lee D B, Kim D W, Cho J Y. Role of growth factors in hematopoietic stem cell niche[J]. Cell Biology and Toxicology, 36, 131-144(2020).
[2] Zhang H L, Zheng X W, Ahmed W et al. Design and applications of cell-selective surfaces and interfaces[J]. Biomacromolecules, 19, 1746-1763(2018).
[3] Charras G, Sahai E. Physical influences of the extracellular environment on cell migration[J]. Nature Reviews Molecular Cell Biology, 15, 813-824(2014).
[4] Li J, Di Russo J, Hua X M et al. Surface immobilized E-cadherin mimetic peptide regulates the adhesion and clustering of epithelial cells[J]. Advanced Healthcare Materials, 8, 1801384(2019).
[5] Damiati L A, Tsimbouri M P, Hernandez V L et al. Materials-driven fibronectin assembly on nanoscale topography enhances mesenchymal stem cell adhesion, protecting cells from bacterial virulence factors and preventing biofilm formation[J]. Biomaterials, 280, 121263(2022).
[6] Han L, Yin Q D, Yang L L et al. Biointerface topography regulates phenotypic switching and cell apoptosis in vascular smooth muscle cells[J]. Biochemical and Biophysical Research Communications, 526, 841-847(2020).
[7] Yang L L, Ge L, van Rijn P. Synergistic effect of cell-derived extracellular matrices and topography on osteogenesis of mesenchymal stem cells[J]. ACS Applied Materials & Interfaces, 12, 25591-25603(2020).
[8] Li B, Chen J X, Wang J H C. RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts[J]. Journal of Biomedical Materials Research Part A, 79, 989-998(2006).
[9] Engler A J, Sen S, Sweeney H L et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 126, 677-689(2006).
[10] Wang S, Hashemi S, Stratton S et al. The effect of physical cues of biomaterial scaffolds on stem cell behavior[J]. Advanced Healthcare Materials, 10, 2001244(2021).
[11] Liu X L, Wang S T. Three-dimensional nano-biointerface as a new platform for guiding cell fate[J]. Chemical Society Reviews, 43, 2385-2401(2014).
[12] Niari S A, Rahbarghazi R, Geranmayeh M H et al. Biomaterials patterning regulates neural stem cells fate and behavior: the interface of biology and material science[J]. Journal of Biomedical Materials Research Part A, 110, 725-737(2022).
[13] Thrivikraman G, Jagiełło A, Lai V K et al. Cell contact guidance via sensing anisotropy of network mechanical resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2024942118(2021).
[14] Kim J, Bae W G, Kim Y J et al. Directional matrix nanotopography with varied sizes for engineering wound healing[J]. Advanced Healthcare Materials, 6, 1700297(2017).
[15] Gui N, Xu W, Myers D E et al. The effect of ordered and partially ordered surface topography on bone cell responses: a review[J]. Biomaterials Science, 6, 250-264(2018).
[16] Li G C, Li S J, Zhang L L et al. Construction of biofunctionalized anisotropic hydrogel micropatterns and their effect on schwann cell behavior in peripheral nerve regeneration[J]. ACS Applied Materials & Interfaces, 11, 37397-37410(2019).
[17] Tamiello C, Buskermolen A B C, Baaijens F P T et al. Heading in the right direction: understanding cellular orientation responses to complex biophysical environments[J]. Cellular and Molecular Bioengineering, 9, 12-37(2016).
[18] Matschegewski C, Staehlke S, Loeffler R et al. Cell architecture-cell function dependencies on titanium arrays with regular geometry[J]. Biomaterials, 31, 5729-5740(2010).
[19] Staehlke S, Koertge A, Nebe B. Intracellular calcium dynamics dependent on defined microtopographical features of titanium[J]. Biomaterials, 46, 48-57(2015).
[20] Matschegewski C, Staehlke S, Birkholz H et al. Automatic actin filament quantification of osteoblasts and their morphometric analysis on microtextured silicon-titanium arrays[J]. Materials, 5, 1176-1195(2012).
[21] Fischer R S, Sun X Y, Baird M A et al. Contractility, focal adhesion orientation, and stress fiber orientation drive cancer cell polarity and migration along wavy ECM substrates[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, 2021135118(2021).
[22] Tilbury K B, Campbell K R, Eliceiri K W et al. Stromal alterations in ovarian cancers via wavelength dependent Second Harmonic Generation microscopy and optical scattering[J]. BMC Cancer, 17, 102(2017).
[23] Provenzano P P, Eliceiri K W, Campbell J M et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Medicine, 4, 38(2006).
[24] Conklin M W, Gangnon R E, Sprague B L et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ[J]. Cancer Epidemiology, Biomarkers & Prevention, 27, 138-145(2018).
[25] Chuang Y J, Tseng F G, Lin W K. Reduction of diffraction effect of UV exposure on SU-8 negative thick photoresist by air gap elimination[J]. Microsystem Technologies, 8, 308-313(2002).
[26] Park J H, Steingart D A, Kodambaka S et al. Electrochemical electron beam lithography: write, read, and erase metallic nanocrystals on demand[J]. Science Advances, 3, e1700234(2017).
[27] Córdoba R, Ibarra A, Mailly D et al. Vertical growth of superconducting crystalline hollow nanowires by He+ focused ion beam induced deposition[J]. Nano Letters, 18, 1379-1386(2018).
[28] McGehee W R, Michels T, Aksyuk V et al. Two-dimensional imaging and modification of nanophotonic resonator modes using a focused ion beam[J]. Optica, 4, 1444-1450(2017).
[29] Malloy M, Litt L C. Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 10, 032001(2011).
[30] Bhardwaj N, Kundu S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 28, 325-347(2010).
[31] Jin F, Liu J, Zhao Y Y et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 13, 1-10(2022).
[32] Wang J Y, Jin F, Dong X Z et al. Flytrap inspired pH-driven 3D hydrogel actuator by femtosecond laser microfabrication[J]. Advanced Materials Technologies, 7, 2200276(2022).
[33] Gao W, Chao H, Zheng Y C et al. Ionic carbazole-based water-soluble two-photon photoinitiator and the fabrication of biocompatible 3D hydrogel scaffold[J]. ACS Applied Materials & Interfaces, 13, 27796-27805(2021).
[34] Gao W, Zheng M L, Jin F et al. Fast fabrication of large-area two-dimensional micro/nanostructure by femtosecond laser[J]. Laser & Optoelectronics Progress, 57, 111421(2020).
[35] Chen L S, Qiao W, Ye Y et al. Critical technologies of micro-nano-manufacturing and its applications for flexible optoelectronic devices[J]. Acta Optica Sinica, 41, 0823018(2021).
[36] Wang T W, Dong X Z, Jin F et al. Consistent pattern printing of the gap structure in femtosecond laser DMD projection lithography[J]. Optics Express, 30, 36791-36801(2022).
[37] Kuang J J, Luo N N, Zhang J Y et al. Review on the progress of parallel micro/nano lithography based on spatial light modulator[J]. Laser & Optoelectronics Progress, 59, 1100009(2022).
[38] Zhou Z Y, Dong X Z, Zheng M L. Evolution and application of digital micromirror device based maskless photolithography[J]. Laser & Optoelectronics Progress, 59, 0922030(2022).
[39] Liu Y H, Zhao Y Y, Jin F et al. λ/12 super resolution achieved in maskless optical projection nanolithography for efficient cross-scale patterning[J]. Nano Letters, 21, 3915-3921(2021).
[40] Wang R R, Zhang W C, Jin F et al. Fabrication of polyaniline microstructure via two-photon polymerization[J]. Chinese Journal of Lasers, 48, 0202006(2021).
[41] Zhang W C, Zheng M L, Dong X Z et al. Rapid preparation of high-precision hydrogel micropatterns and its induction of cell behavior[J]. Opto-Electronic Engineering, 49, 0210336(2022).
[42] Kang M S, Han C, Jeon H. Submicrometer-scale pattern generation via maskless digital photolithography[J]. Optica, 7, 1788-1795(2020).
[43] Jung Y, Lee H, Park T J et al. Programmable gradational micropatterning of functional materials using maskless lithography controlling absorption[J]. Scientific Reports, 5, 1-7(2015).
[44] Shi W X, Xu T L, Xu L P et al. Cell micropatterns based on silicone-oil-modified slippery surfaces[J]. Nanoscale, 8, 18612-18615(2016).
[45] Ridley A J, Schwartz M A, Burridge K et al. Cell migration: integrating signals from front to back[J]. Science, 302, 1704-1709(2003).
[46] Pollard T D, Borisy G G. Cellular motility driven by assembly and disassembly of actin filaments[J]. Cell, 112, 453-465(2003).
[47] Ladoux B, Nicolas A. Physically based principles of cell adhesion mechanosensitivity in tissues[J]. Reports on Progress in Physics, 75, 116601(2012).
Get Citation
Copy Citation Text
Min Guo, Xiangyang Liu, Xianzi Dong, Jie Liu, Feng Jin, Meiling Zheng. Fabrication of Curved Micro-Nano Topography Structures and Regulation of Cell Behavior[J]. Chinese Journal of Lasers, 2023, 50(15): 1507303
Category: Neurophotonics and Optical Regulation
Received: Mar. 6, 2023
Accepted: Mar. 28, 2023
Published Online: Jul. 17, 2023
The Author Email: Zheng Meiling (zhengmeiling@mail.ipc.ac.cn)