Chinese Journal of Lasers, Volume. 50, Issue 8, 0802302(2023)

Thermal Behaviors of Initial and Steady State Deposition Processes of Ti/Al Heterogeneous Materials Fabricated by Laser Additive Manufacturing on Curved Surface

Haojie Yu1,2, Donghua Dai1,2, Xinyu Shi1,2, Yanze Li1,2, Keyu Shi1,2, and Dongdong Gu1,2、*
Author Affiliations
  • 1College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • 2Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-Performance Metallic Components, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • show less
    Figures & Tables(17)
    Experimental process. (a) LDED processing diagram of cylinder outer wall; (b) laser deposition experimental equipment with coaxial powder feeding
    Finite element simulation settings. (a) Physical model and boundary conditions of LDED on outer wall of cylinder; (b) grid division of model; (c) schematic of laser light source moving path
    Physical parameters. (a)(d) Density; (b)(e) thermal conductivity; (c)(f) specific heat
    Temperature curves of Al-Ti heterogeneous material layer under different P when v=0.32 rad/s. (a) Maximum temperature;(b) average temperature of molten pool
    Cloud diagrams of temperature fields of Al-Ti heterogeneous material layer under different P when v=0.32 rad/s. (a) 1400 W;(b) 1700 W; (c) 2000 W; (d) 2300 W
    Molten pool size curves of Al-Ti heterogeneous material layer under different P when v=0.32 rad/s. (a) Molten pool morphology; (b) width of molten pool; (c) depth of molten pool; (d) length of molten pool; (e) volume of molten pool
    Temperature curves and molten pool size curves of Al-Ti heterogeneous material layers at different v when P=2000 W. (a) Maximum temperature; (b) average temperature in molten pool; (c) molten pool width; (d) molten pool depth; (e) molten pool length; (f) molten pool volume
    Temperature curves of stably deposited Ti layers under different P when v=0.32 rad/s. (a) Maximum temperature; (b) average temperature in molten pool
    Ranges of molten pools under different P when v=0.32 rad/s. (a) 1400 W; (b) 1700 W; (c) 2000 W; (d) 2300 W
    Solidification parameter curves at bottom of molten pool at different v when P=2000 W. (a) Cloud diagram of molten pool morphology of stably deposited Ti layer at 1700 ms; (b) temperature gradient; (c) cooling rate; (d) solidification rate; (e) G/R
    Effects of G and R on morphology and size of solidified grains[23]
    Microstructures of samples under different laser powers. (a) Comparison of simulation result and experimental result; (b) 1400 W; (c) 2000 W
    • Table 1. Chemical compositions of aluminum alloy

      View table

      Table 1. Chemical compositions of aluminum alloy

      Chemical compositionCuMnMgZnCrTiSiFeAl
      Mass fraction /%0.200.151.000.250.250.150.600.70Bal.
    • Table 2. Chemical compositions of titanium alloy

      View table

      Table 2. Chemical compositions of titanium alloy

      Chemical compositionCONHFeAlVTi
      Mass fraction /%0.200.151.000.250.250.150.60Bal.
    • Table 3. Numerical simulation experiment parameters

      View table

      Table 3. Numerical simulation experiment parameters

      No.Laser power /WScanning speed /(rad/s)Spot diameter /mm
      114000.322
      217000.322
      320000.262
      420000.292
      520000.322
      620000.352
      723000.322
    • Table 4. Laser volume energy densities and width-to-depth ratios of molten pools under different laser powers

      View table

      Table 4. Laser volume energy densities and width-to-depth ratios of molten pools under different laser powers

      Laser power / W1400170020002300
      Laser volume energy density /(W/mm34.0964.9745.8516.729
      Width-to-depth ratio of molten pool in heterogeneous material layer2.3441.9321.7931.651
      Width-to-depth ratio of molten pool in initial layer1.8591.5371.4191.313
      Width-to-depth ratio of molten pool in stably deposited layer1.4261.2971.1921.152
    • Table 5. Laser volume energy densities and width-to-depth ratios of molten pools under different laser scanning speeds

      View table

      Table 5. Laser volume energy densities and width-to-depth ratios of molten pools under different laser scanning speeds

      Laser scanning speed /(rad/s)0.260.290.320.35
      Laser volume energy density /(W/mm37.2026.4575.8515.350
      Width-to-depth ratio of molten pool in heterogeneous material layer1.7141.8311.8451.867
      Width-to-depth ratio of molten pool in initial layer1.3011.3651.4181.483
      Width-to-depth ratio of molten pool in stably deposited layer1.0991.1671.2161.304
    Tools

    Get Citation

    Copy Citation Text

    Haojie Yu, Donghua Dai, Xinyu Shi, Yanze Li, Keyu Shi, Dongdong Gu. Thermal Behaviors of Initial and Steady State Deposition Processes of Ti/Al Heterogeneous Materials Fabricated by Laser Additive Manufacturing on Curved Surface[J]. Chinese Journal of Lasers, 2023, 50(8): 0802302

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Additive Manufacturing

    Received: Dec. 14, 2022

    Accepted: Jan. 17, 2023

    Published Online: Mar. 28, 2023

    The Author Email: Gu Dongdong (dongdonggu@nuaa.edu.cn)

    DOI:10.3788/CJL221528

    Topics