Acta Photonica Sinica, Volume. 54, Issue 4, 0410002(2025)

Hyperspectral Image Classification Method Based on Dynamic Graph-spectral Feature Extraction

Chenjie XU1...2, Dan LI1,2,* and Fanqiang KONG2 |Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Space Photoelectric Detection and Perception Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • 2College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • show less
    References(48)

    [2] Qingxi TONG, Bing ZHANG, Lifu ZHANG. Current progress of hyperspectral remote sensing in China. Journal of Remote Sensing, 20, 689-707(2016).

    [3] Peijun DU, Junshi XIA, Zhaohui XUE et al. Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20, 236-256(2016).

    [4] P ADDABBO, N FISCANTE, G GIUNTA et al. Multiple sub-pixel target detection for hyperspectral imaging systems. IEEE Transactions on Signal Processing, 71, 1599-1611(2023).

    [5] J TRANSON, R D'ANDRIMONT, A MAUGNARD et al. Survey of hyperspectral earth observation applications from space in the sentinel-2 context. Remote Sensing, 10, 157(2018).

    [6] Yiwei ZHANG, Yanpei GUO, Rong TANG et al. Progress and trends of application of hyperspectral remote sensing in plant diversity research. National Remote Sensing Bulletin, 27, 2467-2483(2023).

    [7] Yanfei ZHONG, Xinyu WANG, Xin HU et al. Hyperspectral with high-spatial resolution remote sensing from observation, processing to applications. Acta Geodaetica et Cartographica Sinica, 52, 1212-1226(2023).

    [8] M E PAOLETTI, J M HAUT, J PLAZA et al. Deep learning classifiers for hyperspectral imaging: a review. Journal of Photogrammetry and Remote Sensing, 158, 279-317(2019).

    [9] Yulong QIAO, Jengshyang PAN, Shenghe SUN. Improved K nearest neighbors classification algorithm. Acta Electronica Sinica, 33, 1146-1149(2005).

    [10] C SCOTT, R D NOWAK. Minimax-optimal classification with dyadic decision trees. IEEE Transactions on Information Theory, 52, 1335-1353(2006).

    [11] J HAM, Yangchi CHEN, M M CRAWFORD et al. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 43, 492-501(2005).

    [12] Baofeng GUO, S R GUNN, R I DAMPER et al. Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Transactions on Image Processing, 17, 622-629(2008).

    [13] Y TARABALKA, J A BENEDIKTSSON, J CHANUSSOT. Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques. IEEE Transactions on Geoscience and Remote Sensing, 47, 2973-2987(2009).

    [14] R BRO, A K SMILDE. Principal component analysis. Analytical Methods, 6, 2812-2831(2014).

    [15] S GEPSHTEIN, Y KELLER. Iterative spectral independent component analysis. Signal Processing, 155, 368-376(2019).

    [16] Guangyi CHEN, A KRZYŻAK, Shenen QIAN. Noise robust hyperspectral image classification with MNF-based edge preserving features. Image Analysis & Stereology, 42, 93-99(2023).

    [17] J A BENEDIKTSSON, J A PALMASON, J R SVEINSSON. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Transactions on Geoscience Remote Sensing, 43, 480-491(2005).

    [18] B A BEIRAMI, M MOKHTARZADE. Band grouping SuperPCA for feature extraction and extended morphological profile production from hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 17, 1953-1957(2020).

    [19] Xiaobo LIU, Xu YIN, Yaoming CAI et al. Visual saliency-based extended morphological profiles for unsupervised feature learning of hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 17, 1963-1967(2020).

    [20] Yushi CHEN, Zhouhan LIN, Xing ZHAO et al. Deep learning-based classification of hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107(2014).

    [21] Rongjie CHENG, Yun YANG, Longwei LI et al. Lightweight residual network based on depthwise separable convolution for hyperspectral image classification. Acta Optica Sinica, 43, 1228010(2023).

    [22] Lichao MOU, P GHAMISI, Xiaoxiang ZHU. Deep recurrent neural networks for hyperspectral image classification. IEEE Transactions on Geoscience & Remote Sensing, 55, 3639-3655(2017).

    [23] Caihao SUN, Xiaohua ZHANG, Hongyun MENG et al. AC-WGAN-GP: generating labeled samples for improving hyperspectral image classification with small-samples. Remote Sensing, 14, 4910(2022).

    [24] Yu ZHOU, Haixia ZHENG, Xin HUANG et al. Graph neural networks: taxonomy, advances, and trends. ACM Transactions on Intelligent Systems and Technology, 13, 59(2022).

    [25] Guoyong WU, M A A AL-QANESS, D Al-ALIMI et al. Hyperspectral image classification using graph convolutional network: A comprehensive review. Expert Systems with Applications, 257, 125106(2024).

    [26] Guojun LIANG, K U, Haichang YIN et al. Multi-scale hybrid attention graph convolution neural network for remote sensing images super-resolution. Signal Processing, 207, 108954(2023).

    [27] Anyong QIN, Zhaowei SHANG, Jinyu TIAN et al. Spectral-spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 16, 241-245(2019).

    [28] Xin HE, Yushi CHEN, P GHAMISI. Dual graph convolutional network for hyperspectral image classification with limited training samples. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-18(2022).

    [29] Danfeng HONG, Lianru GAO, Jing YAO et al. Graph convolutional networks for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 59, 5966-5978(2021).

    [30] Sheng WAN, Chen GONG, Ping ZHONG et al. Multiscale dynamic graph convolutional network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 58, 3162-3177(2020).

    [31] Hao ZHOU, Fulin LUO, Huiping ZHUANG et al. Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-14(2023).

    [32] Anshu SHA, Bin WANG, Xiaofeng WU et al. Semisupervised classification for hyperspectral images using graph attention networks. IEEE Geoscience and Remote Sensing Letters, 18, 157-161(2021).

    [33] Chunlan YANG, Dawei XUE. EGCN: enhanced graph convolutional network for hyperspectral image classification(2024).

    [34] Xiaolong WANG, R GIRSHICK, A GUPTA et al. Non-local neural networks, 7794-7803(2018).

    [35] A VASWANI, N SHAZEER, N PARMAR et al. Attention is all you need, 6000-6010(2017).

    [36] Y BAZI, L BASHMAL, M M A RAHHAL et al. Vision transformers for remote sensing image classification. Remote Sensing, 13, 516(2021).

    [37] Kai HAN, Yunhe WANG, Hanting CHEN et al. A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45, 87-110(2023).

    [38] Ji HE, Lina ZHAO, Hongwei YANG et al. HSI-BERT: hyperspectral image classification using the bidirectional encoder representation from transformers. IEEE Transactions on Geoscience and Remote Sensing, 58, 165-178(2020).

    [39] Danfeng HONG, Zhu HAN, Jing YAO et al. SpectralFormer: rethinking hyperspectral image classification with transformers. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    [40] Zilong ZHONG, Ying LI, Lingfei MA et al. Spectral-spatial transformer network for hyperspectral image classification: a factorized architecture search framework. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    [41] Xiaofei YANG, Weijia CAO, Yao LU et al. Hyperspectral image transformer classification networks. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-15(2022).

    [42] Le SUN, Guangrui ZHAO, Yuhui ZHENG et al. Spectral-spatial feature tokenization transformer for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 60, 1-14(2022).

    [43] Xin HE, Yushi CHEN, Zhouhan LIN. Spatial-spectral transformer for hyperspectral image classification. Remote Sensing, 13, 498(2021).

    [44] S K ROY, A DERIA, C SHAH et al. Spectral-spatial morphological attention transformer for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-15(2023).

    [45] S K ROY, A DERIA, Danfeng HONG et al. Multimodal fusion transformer for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-20(2023).

    [46] ABEN HAMIDA, A BENOIT, P LAMBERT et al. 3-D deep learning approach for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 56, 4420-4434(2018).

    [47] S K ROY, G KRISHNA, S R DUBEY et al. HybridSN: exploring 3D-2D CNN feature hierarchy for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2020).

    [48] E OUYANG, Bin LI, Wenjing HU et al. When multigranularity meets spatial-spectral attention: a hybrid transformer for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-18(2023).

    [49] Ziqi ZHAO, Changbao YANG, Zhongjun QIU et al. Discrete cosine transform-based joint spectral-spatial information compression and band-correlation calculation for hyperspectral feature extraction. Remote Sensing, 16, 4270(2024).

    Tools

    Get Citation

    Copy Citation Text

    Chenjie XU, Dan LI, Fanqiang KONG. Hyperspectral Image Classification Method Based on Dynamic Graph-spectral Feature Extraction[J]. Acta Photonica Sinica, 2025, 54(4): 0410002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 16, 2024

    Accepted: Dec. 16, 2024

    Published Online: May. 15, 2025

    The Author Email: LI Dan (danli@nuaa.edu.cn)

    DOI:10.3788/gzxb20255404.0410002

    Topics