Acta Photonica Sinica, Volume. 54, Issue 4, 0410002(2025)

Hyperspectral Image Classification Method Based on Dynamic Graph-spectral Feature Extraction

Chenjie XU1,2, Dan LI1,2、*, and Fanqiang KONG2
Author Affiliations
  • 1Key Laboratory of Space Photoelectric Detection and Perception Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • 2College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
  • show less
    Figures & Tables(22)
    The structure of transformer encoder
    Proposed network structure
    The dynamic graph construction
    The estimated distance calculation between nodes
    Schematic diagram of pixel node dynamic connection
    The structure of dynamic graph construction and feature extraction network
    The structure of region-global spectral feature extraction network
    Cross-layer feature fusion
    The structure of cross attention feature fusion network
    Indian Pines data set category and ground-truth map
    University of Pavia data set category and ground-truth map
    Salinas data set category and ground-truth map
    Classification map of different methods on the Indian Pines
    Classification map of different methods on the University of Pavia
    Classification map of different methods on the Salinas
    • Table 1. Classification result of ablation experiments on the Indian Pines

      View table
      View in Article

      Table 1. Classification result of ablation experiments on the Indian Pines

      ClassDGCFN/%RGSFN/%DGSFEC/%
      198.54±1.9596.09±7.2599.51±0.97
      293.80±0.5095.26±1.2194.79±0.54
      399.22±0.4599.15±0.6898.96±0.69
      498.49±0.9697.41±4.3898.59±1.95
      596.80±0.5997.91±1.3398.14±1.03
      699.45±0.2798.87±0.8099.42±0.60
      788.00±9.3099.60±1.20100.00±0
      899.95±0.0999.69±0.7699.98±0.06
      972.22±16.1084.44±18.2283.89±10.95
      1096.71±0.9098.22±0.6398.83±0.76
      1198.39±0.3499.39±0.3099.58±0.25
      1295.97±0.6397.82±1.3595.34±1.08
      1398.70±0.7796.86±0.9999.30±0.68
      1499.58±0.2999.97±0.0499.95±0.07
      1597.35±1.1196.85±4.9197.52±2.42
      1683.33±5.0280.83±13.3592.62±4.21
      OA97.49±0.1498.17±0.7798.33±0.21
      AA94.78±1.1196.15±2.6197.28±0.65
      Kappa97.14±0.1797.91±0.8898.10±0.24
    • Table 2. Classification result of ablation experiments on the University of Pavia

      View table
      View in Article

      Table 2. Classification result of ablation experiments on the University of Pavia

      ClassDGCFN/%RGSFN/%DGSFEC/%
      187.11±1.7786.74±19.9395.45±2.67
      298.98±0.1499.32±0.6099.83±0.15
      392.70±1.7771.32±24.4684.54±7.32
      470.08±2.4483.16±14.5195.04±5.05
      592.49±1.6188.99±6.4194.69±2.06
      699.39±0.2286.42±29.8999.35±0.82
      793.62±0.4965.41±17.9092.15±7.59
      887.20±1.6583.07±27.2789.89±1.17
      976.50±3.6779.89±11.1385.35±10.18
      OA93.14±0.3390.12±11.7696.26±0.79
      AA88.65±0.5282.70±16.0192.64±1.76
      Kappa90.90±0.4485.56±19.4595.05±1.06
    • Table 3. Classification result of ablation experiments on the Salinas

      View table
      View in Article

      Table 3. Classification result of ablation experiments on the Salinas

      ClassDGCFN/%RGSFN/%DGSFEC/%
      199.75±0.4698.95±1.5599.80±0.27
      299.99±0.0398.87±3.35100.00±0
      399.50±0.9787.08±29.32100.00±0
      497.79±1.3896.86±4.6897.39±0.31
      597.60±1.4398.11±1.7798.49±0.62
      699.59±0.3699.59±0.48100.00±0
      799.28±0.3299.40±0.49100.00±0
      899.41±0.6591.83±15.3399.20±0.99
      999.57±1.2999.93±0.12100.00±0
      1099.51±0.7998.27±2.5499.91±0.14
      1199.02±2.0492.98±11.8399.05±0.41
      1299.26±1.1198.76±3.4198.95±1.01
      1392.22±5.6895.49±2.9997.68±4.96
      1498.58±1.5695.82±9.5299.91±0.29
      1598.41±2.0390.25±15.2398.26±0.35
      1699.86±0.2199.98±0.03100.00±0
      OA99.09±0.4695.71±4.8699.34±0.36
      AA98.71±0.6896.38±4.0299.29±0.61
      Kappa98.99±0.5195.22±5.3999.27±0.41
    • Table 4. Classification result of different methods on the Indian Pines

      View table
      View in Article

      Table 4. Classification result of different methods on the Indian Pines

      Class3DCNN/%HybridSN/%MiniGCN/%MDGCN/%AMGCFN/%Hybrid Former/%Spectral Former/%SSBC/%DGSFEC/%
      175.9996.1071.6693.7568.2397.2174.9290.9199.51
      288.1094.7984.9292.6389.4497.3184.0593.0094.79
      378.3498.8675.9893.1292.3498.2491.8493.6698.96
      478.5193.9976.5196.1491.4696.9893.73100.0098.59
      589.1697.6888.8896.0390.3787.8486.5199.1398.14
      697.1098.6990.2697.4394.5999.1994.9899.2899.42
      768.38100.0085.4469.2381.6398.4287.69100.00100.00
      896.9399.9595.1097.9999.2699.6568.73100.0099.98
      964.3683.8979.00100.0094.7385.7165.0789.4783.89
      1081.1398.8083.3084.3992.1996.0499.3893.2898.83
      1187.5699.3286.1794.9396.1198.3293.4898.2099.58
      1280.5293.4887.6490.0584.2396.9184.2495.9195.34
      1398.5299.2484.75100.0096.0899.39100.0097.9599.30
      1496.4299.7096.2899.3597.6099.7076.9298.4299.95
      1573.4298.5680.5698.8894.9798.67100.0099.7397.52
      1689.0193.4593.6098.4186.3495.52100.0098.8692.62
      OA86.6097.9786.4894.3493.3698.1280.9796.8098.33
      AA81.0896.6585.0693.9090.6096.7987.6096.7497.28
      Kappa84.7097.6884.5693.5192.4497.8678.4596.3598.10
    • Table 5. Classification result of different methods on the University of Pavia

      View table
      View in Article

      Table 5. Classification result of different methods on the University of Pavia

      Class3DCNN/%HybridSN/%MiniGCN/%MDGCN/%AMGCFN/%Hybrid Former/%Spectral Former/%SSBC/%DGSFEC/%
      189.5995.2796.9959.3795.0489.7085.3989.0095.45
      291.9799.2994.5078.6198.9696.4189.6499.1799.83
      375.8891.7784.2777.4895.2878.3481.1085.3784.54
      494.5585.3885.8973.4783.7197.4194.1693.3495.04
      596.9197.3599.7395.6741.8499.5499.3797.8294.69
      684.1295.1792.0480.7696.6290.6676.8592.3399.35
      782.6997.9674.6178.9287.4494.6287.0584.4392.15
      884.4287.5469.7843.7898.0777.1990.5285.9089.89
      991.5577.7494.7067.9493.4897.7999.8795.8485.35
      OA87.5195.1390.2172.7794.4592.0987.9493.9896.26
      AA85.5191.6288.0672.8987.8390.8489.3391.4792.64
      Kappa83.6393.5386.7765.3692.6589.5783.8892.0095.05
    • Table 6. Classification result of different methods on the Salinas

      View table
      View in Article

      Table 6. Classification result of different methods on the Salinas

      Class3DCNN/%HybridSN/%MiniGCN/%MDGCN/%AMGCFN/%HybridFormer/%SpectralFormer/%SSBC/%DGSFEC/%
      196.7399.9799.8088.8399.7999.3199.3498.0499.80
      299.05100.0099.7995.8397.6699.5886.6099.81100.00
      397.4799.9799.3392.7099.8499.2943.1497.65100.00
      498.5896.3897.6094.3594.2698.5099.7199.4997.39
      598.6698.1288.6663.6781.7899.3197.3197.9698.49
      698.2699.6899.9593.0892.69100.0099.3699.87100.00
      798.4799.9699.2180.7399.2099.9298.9298.31100.00
      886.7798.8078.0869.2199.3293.8467.5790.1299.20
      998.9999.9999.4988.7499.4499.5497.4999.12100.00
      1093.1599.1688.2988.9898.7097.3280.4895.6999.91
      1194.3096.7782.5087.2886.5297.9378.2194.8099.05
      1297.7397.8696.6792.3096.3299.7799.1099.7498.95
      1397.3098.5393.6177.7743.5999.7997.3495.7097.68
      1496.8999.1199.5180.4891.3198.8190.9399.8199.91
      1578.3396.3271.5781.8697.8890.0450.0697.8998.26
      1676.4599.9499.2996.4599.1099.8495.0298.38100.00
      OA91.4898.8189.5483.0896.0796.9980.9396.6599.34
      AA93.6798.7993.3385.7792.3498.5286.2997.6599.29
      Kappa90.5398.6788.3681.3095.6296.6578.8196.2799.27
    • Table 7. Running time of different algorithms

      View table
      View in Article

      Table 7. Running time of different algorithms

      Data setMethod3DCNN/sHybridSN/sMiniGCN/sMDGCN/sAMGCFN/sHybrid Former/sSpectral Former/sSSBC/sDGSFEC/s
      Indian PinesTraining time109.4827.49131.53269.8826.42312.56224.59100.56125.19
      Test time0.990.551.321.110.714.722.202.964.96
      Total time110.4728.04132.85270.9927.13317.28226.79103.52130.15
      University of PaviaTraining time69.8472.275791205.24185.2884.37464.45161.0192.98
      Test time5.892.6345.292.947.5525.383.3222.216.12
      Total time75.7374.9624.291208.18192.83109.75467.77183.2299.10
      SalinasTraining time159.8520.64300.32242.9688.26171.51705.88566.59116.61
      Test time5.483.0947.51.397.622.9710.0814.467.67
      Total time165.3323.73347.82244.3595.86194.48715.96581.05124.28
    Tools

    Get Citation

    Copy Citation Text

    Chenjie XU, Dan LI, Fanqiang KONG. Hyperspectral Image Classification Method Based on Dynamic Graph-spectral Feature Extraction[J]. Acta Photonica Sinica, 2025, 54(4): 0410002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Oct. 16, 2024

    Accepted: Dec. 16, 2024

    Published Online: May. 15, 2025

    The Author Email: Dan LI (danli@nuaa.edu.cn)

    DOI:10.3788/gzxb20255404.0410002

    Topics