Laser & Optoelectronics Progress, Volume. 61, Issue 14, 1428003(2024)

Laser SLAM Method for Nearshore Unmanned Boat Based on Embankment Feature Extraction

Keran Li1, Ligang Li1、*, Zehao He2, Hongbing Xu1, and Yongshou Dai1
Author Affiliations
  • 1College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, Shandong , China
  • 2College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong , China
  • show less
    Figures & Tables(19)
    Overall framework of EF-SLAM method
    Comparison of the extraction results using the raster map method and the actual situation. (a) Waterline points extracted by the raster map method; (b) actual waterline points
    Front-view projection point cloud elevation visualization
    Schematic of the criteria for identifying waterside feature points
    Schematic of feature point association method. (a) Waterside feature points; (b) plane feature points
    Factor graph of EF-SLAM method
    Unmanned boat system platform
    EF-SLAM mapping results and comparison of motion trajectories. (a) EF-SLAM mapping result for N03_3; (b) EF-SLAM mapping result for N03_2; (c) comparison of motion trajectories for N03_3; (d) comparison of motion trajectories for N03_2
    Global distribution of absolute trajectory errors. (a) A-LOAM; (b) LEGO-LOAM; (c) LIO-SAM; (d) EF-SLAM
    Global distribution of relative trajectory errors. (a) A-LOAM; (b) LEGO-LOAM; (c) LIO-SAM; (d) EF-SLAM
    Experimental scene diagram
    N02_4 side view of mapping results. (a) A-LOAM; (b) LEGO-LOAM; (c) LIO-SAM; (d) EF-SLAM
    Satellite map of surveyed dataset
    Overhead view of mapping results of surveyed dataset. (a) A-LOAM; (b) LEGO-LOAM; (c) LIO-SAM; (d) EF-SLAM
    Side view of mapping results of surveyed dataset. (a) A-LOAM; (b) LEGO-LOAM; (c) LIO-SAM; (d) EF-SLAM
    • Table 1. Comparison of maximum and mean absolute trajectory errors

      View table

      Table 1. Comparison of maximum and mean absolute trajectory errors

      SequenceA-LOAMLEGO-LOAMLIO-SAMEF-SLAM
      MaxMeanMaxMeanMaxMeanMaxMean
      N02_42.351.682.671.852.541.682.531.66
      N02_60.350.200.810.470.310.180.210.11
      N03_221.435.659.913.932.681.421.881.04
      N03_312.623.9713.554.435.712.551.030.55
      N03_56.112.301.870.651.790.551.740.54
      H05_939.8216.7434.9014.2813.096.647.943.77
    • Table 2. Comparison of root mean square errors and standard deviations of absolute trajectory errors

      View table

      Table 2. Comparison of root mean square errors and standard deviations of absolute trajectory errors

      SequenceA-LOAMLEGO-LOAMLIO-SAMEF-SLAM
      RMSEStdRMSEStdRMSEStdRMSEStd
      N02_41.8750.8271.9790.6791.8660.7651.8520.763
      N02_60.2270.0900.5180.2100.1960.0740.1190.057
      N03_27.0384.4094.5742.3721.5600.4941.1950.527
      N03_35.5713.9065.9884.0273.1281.8070.6140.274
      N03_52.7051.4100.7270.3250.6390.3240.6260.317
      H05_919.95610.85617.55010.1937.6943.8804.2922.049
    • Table 3. Comparison of maximum and mean relative trajectory errors

      View table

      Table 3. Comparison of maximum and mean relative trajectory errors

      SequenceA-LOAMLEGO-LOAMLIO-SAMEF-SLAM
      MaxMeanMaxMeanMaxMeanMaxMean
      N02_42.3691.2702.4071.3032.3851.2712.2951.258
      N02_60.3120.2280.3180.2380.3080.2270.3070.226
      N03_23.9430.4303.8630.4373.9270.4243.7240.420
      N03_33.6962.8323.6782.9533.6932.8193.5142.621
      N03_52.1451.8032.1661.6892.1381.6022.0541.454
      H05_93.1441.9112.7711.8742.6711.8492.5891.643
    • Table 4. Comparison of root mean square errors and standard deviations of relative trajectory errors

      View table

      Table 4. Comparison of root mean square errors and standard deviations of relative trajectory errors

      SequenceA-LOAMLEGO-LOAMLIO-SAMEF-SLAM
      RMSEStdRMSEStdRMSEStdRMSEStd
      N02_40.14760.02760.15130.02650.14770.02760.14750.0270
      N02_60.23070.03600.24130.03790.23040.03600.22980.0359
      N03_20.30130.23530.07520.05390.07240.05230.07230.0515
      N03_30.28180.05600.29890.02670.28170.05490.28150.0554
      N03_50.27050.05210.30030.06450.27020.05120.27010.0510
      H05_90.44030.08500.44060.09390.44170.09000.43970.0855
    Tools

    Get Citation

    Copy Citation Text

    Keran Li, Ligang Li, Zehao He, Hongbing Xu, Yongshou Dai. Laser SLAM Method for Nearshore Unmanned Boat Based on Embankment Feature Extraction[J]. Laser & Optoelectronics Progress, 2024, 61(14): 1428003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Aug. 2, 2023

    Accepted: Nov. 23, 2023

    Published Online: Jul. 8, 2024

    The Author Email: Ligang Li (upcllg@163.com)

    DOI:10.3788/LOP231845

    CSTR:32186.14.LOP231845

    Topics