Chinese Optics, Volume. 15, Issue 4, 640(2022)
Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films
[1] [1] ZHONG W L. The Physics of Ferroelectrics[M]. Beijing: Press of Science, 1996. (in Chinese)
[2] LOVINGER A J. Annealing of poly(vinylidene fluoride) and formation of a fifth phase[J]. Macromolecules, 15, 40-44(1982).
[3] KEPLER R G, ANDERSON R A. Ferroelectric polymers[J]. Advances in Physics, 41, 1-57(1992).
[4] MCFEE J H, BERGMAN J G, CRANE G R. Pyroelectric and nonlinear optical properties of poled polyvinylidene fluoride films[J]. IEEE Transactions on Sonics and Ultrasonics, 19, 305-314(1972).
[5] SINGER K D, LALAMA S J, SOHN J E. Organic nonlinear optical materials[J]. Proceedings of SPIE, 578, 130-136(1985).
[6] RUAN L X, YAO X N, CHANG Y F, et al. Properties and applications of the β phase poly(vinylidene fluoride)[J]. Polymers, 10, 228(2018).
[7] RIBEIRO C, COSTA C M, CORREIA D M, et al. Electroactive poly(vinylidene fluoride)-based structures for advanced applications[J]. Nature Protocols, 13, 681-704(2018).
[8] ZHANG SH T, AN Q. Progress on the design and fabrication of high performance piezoelectric flexible materials based on polyvinylidene fluoride[J]. Chemical Journal of Chinese Universities, 42, 1114-1145(2021).
[9] WANG H, CHEN Q S, XIA W, et al. Electroactive PVDF thin films fabricated via cooperative stretching process[J]. Journal of Applied Polymer Science, 135, 46324(2018).
[10] [10] SCHNABEL W. Polymers Light: Fundamentals Technical Applications[M]. Weinheim: WileyVCH, 2007.
[11] [11] BLOEMBERGEN N. Nonlinear Optics[M]. WU C K, SHEN W D, WO X N, trans. Beijing: Science Press, 1987. (in Chinese)
[12] ZHANG ZH G, WU H C, GAO CH. Research progress on nonlinear optical organic polymers[J]. New Chemical Materials, 31, 6-9(2003).
[13] HUO F Y, CHEN ZH, BO SH H. Advances in organic second-order nonlinear optical polymers[J]. Journal of Functional Polymers, 33, 108-124(2020).
[14] HUANG F R, LI SH J. Nonlinear optical researches on polymers-principles and materials[J]. Chemical Industry and Engineering Progress, 16-22(1994).
[15] ZHENG L X, WANG D L, CHEN T L, . Poled polymer for second-order nonlinear optics[J]. Polymer Bulletin, 152-155(1994).
[16] LUO J D, ZHAN C M, QIN J G. Progress of poled polymeric electro-optic materials[J]. Polymer Bulletin, 9-19(2000).
[17] REN L, MAO M F, HOU Y J, . Progress on polyimide-based second-order nonlinear optical materials[J]. Materials Science & Engineering, 20, 84-88(2002).
[18] [18] ALLEN N S. Photochemistry Photophysics of Polymer Materials[M]. Hoboken: J. Wiley, 2010.
[19] LIU J L, OUYANG C B, HUO F Y, et al. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials[J]. Dyes and Pigments, 181, 108509(2020).
[20] YU L, CHEN M ZH, HUANG M CH, . Measurements of optical nonlinearity by
[21] [21] BUBECK C. Measurement of nonlinear optical susceptibilities[M]ZERBI G. ganic Materials f Photonics: Science Technology. Amsterdam: Elsevier, 1993: 215232.
[22] QI SH W, YANG X Q, CHEN K, . Z-scan technique and measurement of nonlinear optical material properties[J]. Physics Experimentation, 23, 14-19(2003).
[23] LI ZH G, SONG Y L. Advancement of third-order nonlinear optical measurement technique[J]. Journal of Natural Science of Heilongjiang University, 33, 75-81(2016).
[24] GODIN T, FROMAGER M, CAGNIOT E, et al. Baryscan: a sensitive and user-friendly alternative to
[25] KOLKOWSKI R, SAMOC M. Modified
[26] DOLL W W, LANDO J B. Polymorphism of poly(vinylidene fluoride). III. The crystal structure of phase II[J]. Journal of Macromolecular Science, Part B, 4, 309-329(1970).
[27] NIU X L, LIU P, LIU W G, . Study on β-phase crystal formation of poly(vinylidene difluoride) in poly(methyl methacrylate)/poly (vinylidene difluoride) blends[J]. Polymer Bulletin, 31-34(2010).
[28] KARASAWA N, GODDARD III W A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules, 25, 7268-7281(1992).
[29] FUKADA E. Mechanical deformation and electrical polarization in biological substances[J]. Biorheology, 5, 199-208(1968).
[30] KAWAI H. The piezoelectricity of poly (vinylidene fluoride)[J]. Japanese Journal of Applied Physics, 8, 975-976(1969).
[31] HASEGAWA R, TANABE Y, KOBAYASHI M, et al. Structural studies of pressure-crystallized polymers. I. Heat treatment of oriented polymers under high pressure[J]. Journal of Polymer Science Part A-2:Polymer Physics, 8, 1073-1087(1970).
[32] HASEGAWA R, KOBAYASHI M, TADOKORO H. Molecular conformation and packing of poly(vinylidene fluoride). stability of three crystalline forms and the effect of high pressure[J]. Polymer Journal, 3, 591-599(1972).
[33] KOBAYASHI M, TASHIRO K, TADOKORO H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride)[J]. Macromolecules, 8, 158-171(1975).
[34] NAEGELE D, YOON D Y, BROADHURST M G. Formation of a new crystal form (αp) of poly(vinylidene fluoride) under electric field[J]. Macromolecules, 11, 1297-1298(1978).
[35] YANG D C, CHEN Y.
[36] SAJKIEWICZ P, WASIAK A, GOCŁOWSKI Z. Phase transitions during stretching of poly(vinylidene fluoride)[J]. European Polymer Journal, 35, 423-429(1999).
[37] GARCÍA-ZALDÍVAR O, ESCAMILLA-DÍAZ T, RAMÍREZ-CARDONA M, et al. Ferroelectric-paraelectric transition in a membrane with quenched-induced δ-phase Of PVDF[J]. Scientific Reports, 7, 5566(2017).
[38] MATSUSHIGE K, NAGATA K, IMADA S, et al. The II-I crystal transformation of poly(vinylidene fluoride) under tensile and compressional stresses[J]. Polymer, 21, 1391-1397(1980).
[39] NAKAMURA K, NAGAI M, KANAMOTO T, et al. Development of oriented structure and properties on drawing of poly(vinylidene fluoride) by solid-state coextrusion[J]. Journal of Polymer Science Part B:Polymer Physics, 39, 1371-1380(2001).
[40] WEINHOLD S, LITT M, LANDO J B. The effect of crystallite orientation on the electric field induced α to δ crystal phase transition in poly(vinylidene fluoride)[J]. Ferroelectrics, 57, 277-296(1984).
[41] CHEN Y, YANG D C. Studies on morphology of highly oriented FHMS of PVF2/PMMA blends Ⅱ. The effects of annealing and deform Aton on phase Transitton of oriented PVF2[J]. Polymeric Materials Science & Engineering, 32-38(1988).
[42] MAHADEVA S K, BERRING J, WALUS K, et al. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling[J]. Journal of Physics D:Applied Physics, 46, 285305(2013).
[43] HSU S L, LU F J, WALDMAN D A, et al. Analysis of the crystalline phase transformation of poly(vinylidene fluoride)[J]. Macromolecules, 18, 2583-2587(1985).
[44] NAEGELE D, YOON D Y. Orientation of crystalline dipoles in poly(vinylidene fluoride) films under electric field[J]. Applied Physics Letters, 33, 132-134(1978).
[45] HATTORI T, KANAOKA M, OHIGASHI H. Improved piezoelectricity in thick lamellar β-form crystals of poly(vinylidene fluoride) crystallized under high pressure[J]. Journal of Applied Physics, 79, 2016-2022(1996).
[46] BERGMAN J G JR, MCFEE J H, CRANE G R. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films[J]. Applied Physics Letters, 18, 203-205(1971).
[47] GOOKIN D, MORRIS R. Electro-optic hysteresis in polyvinylidene fluoride[J]. Applied Physics Letters, 45, 603-604(1984).
[48] AKTSIPETROV O A, MISURYAEV T V, MURZINA T V, et al. Optical second-harmonic-generation probe of two-dimensional ferroelectricity[J]. Optics Letters, 25, 411-413(2000).
[49] AKTSIPETROV O A, BLINOV L M, FRIDKIN V M, et al. Two-dimensional ferroelectricity and second harmonic generation in PVDF Langmuir-Blodgett films[J]. Surface Science, 454-456, 1016-1020(2000).
[50] BROUSSOUX D, MICHERON F. Electro‐optic and elasto‐optic effects in polyvinylidene fluoride[J]. Journal of Applied Physics, 51, 2020-2023(1980).
[51] CAKMAK M, WANG Y M. The intrinsic birefringence of the α, β, and γ forms of polyvinylidene fluoride and the estimation of orientation in fibers and films[J]. Journal of Applied Polymer Science, 37, 977-985(1989).
[52] BERGE B, WICKER A, LAJZEROWICZ J, et al. Second-harmonic generation of light and evidence of phase matching in thin films of P(VDF-TrFE) copolymers[J]. Europhysics Letters, 9, 657-662(1989).
[53] WICKER A, BERGE B, LAJZEROWICZ J, et al. Nonlinear optical investigation of the bulk ferroelectric polarization in a vinylidene fluoride/trifluoroethylene copolymer[J]. Journal of Applied Physics, 66, 342-349(1989).
[54] BEN-DAVID M, ENGEL L, SHACHAM-DIAMAND Y. Spectroscopic ellipsometry study of spin coated P(VDF-TrFE-CTFE) thin films and P(VDF-TrFE-CTFE)/PMMA blends[J]. Microelectronic Engineering, 171, 37-43(2017).
[55] [55] MILES M J. Gelation[M]BASSETT D C. Developments in Crystalline Polymers. Ddrecht: Springer, 1988: 233295.
[56] [56] BAUER S. Nonlinear optics with inhomogeneously poled polymers[M]EHRFELD W, WEGNER G, KARTHE W, et al. . Integrated Optics MicroOptics with Polymers. Wiesbaden: Vieweg+Teubner Verlag, 1993,doi: 10.10079783322934307_3.
[57] BAI M J, POULSEN M, SOROKIN A V, et al. Infrared spectroscopic ellipsometry study of vinylidene fluoride (70%)-trifluoroethylene (30%) copolymer Langmuir-Blodgett films[J]. Journal of Applied Physics, 94, 195-200(2003).
[58] BAI M J, SOROKIN A V, THOMPSON D W, et al. Determination of the optical dispersion in ferroelectric vinylidene fluoride (70%)/trifluoroethylene (30%) copolymer Langmuir-Blodgett films[J]. Journal of Applied Physics, 95, 3372-3377(2004).
[59] JEONG D Y, WANG Y K, HUANG M, et al. Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer[J]. Journal of Applied Physics, 96, 316-319(2004).
[60] BUNE A V, ZHU CH X, DUCHARME S, et al. Piezoelectric and pyroelectric properties of ferroelectric Langmuir-Blodgett polymer films[J]. Journal of Applied Physics, 85, 7869-7873(1999).
[61] KEPLER R G, ANDERSON R A. Piezoelectricity and pyroelectricity in polyvinylidene fluoride[J]. Journal of Applied Physics, 49, 4490-4494(1978).
[62] MENG Q J, LI W J, ZHENG Y S, et al. Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride)[J]. Journal of Applied Polymer Science, 116, 2674-2684(2010).
[63] ZHAO X J, PENG G R, ZHAN Z J, et al. Structure change and energy storage property of poly(vinylidene fluoride-hexafluoropropylene)/poly (methyl methacrylate) blends[J]. Polymer Science Series A, 57, 452-459(2015).
[64] SHAO Y, YANG Z X, DENG B W, et al. Tuning PVDF/PS/HDPE polymer blends to tri-continuous morphology by grafted copolymers as the compatibilizers[J]. Polymer, 140, 188-197(2018).
[65] BERKOVIC G, KRONGAUZ V, YITZCHAIK S. Nonlinear optics in poled polymers with two-dimensional asymmetry[J]. Proceedings of SPIE, 1442, 44-52(1991).
[66] FRIDKIN V M, DUCHARME S, BUNE A V, et al. Two-dimensional ferroelectrics[J]. Ferroelectrics, 236, 1-10(2000).
[67] [67] HE P SH. Polymerization in TwoDimensional State[M]. Hefei: Press of University of Science Technology of China, 2008. (in Chinese)
[68] PALTO S, BLINOV L, BUNE A, et al. Ferroelectric langmuir-blodgett films[J]. Ferroelectrics Letters Section, 19, 65-68(1995).
[69] VEVED A, EJUH G W, DJONGYANG N. Study of the optoelectronic and piezoelectric properties of ZrO2 doped PVDF from quantum chemistry calculations[J]. Chinese Journal of Physics, 63, 213-219(2020).
[70] DUAN CH G, MEI W N, YIN W G, et al. Theoretical study on the optical properties of polyvinylidene fluoride crystal[J]. Journal of Physics:Condensed Matter, 15, 3805-3811(2003).
[71] WANG J L, GAO Y Q, HUANG Z M, et al. The optical dispersion of langmuir-blodgett terpolymer films[J]. Ferroelectrics, 405, 120-125(2010).
[72] SONG C, HANG Y, XU J. Research progress of ZnO single crystal[J]. Journal of Synthetic Crystals, 33, 81-87(2004).
[73] INDOLIA A P, GAUR M S. Optical properties of solution grown PVDF-ZnO nanocomposite thin films[J]. Journal of Polymer Research, 20, 43(2013).
[74] SHANSHOOL H M, YAHAYA M, YUNUS W M M, et al. Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique[J]. Brazilian Journal of Physics, 45, 538-544(2015).
[75] SHANSHOOL H M, YAHAYA M, YUNUS W M M, et al. Polymer-ZnO nanocomposites foils and thin films for UV protection[J]. AIP Conference Proceedings, 1614, 136-141(2014).
[76] SINGH N, MADHAV H, YADAV S, et al. Impact of vanadium-, sulfur-, and dysprosium-doped zinc oxide nanoparticles on various properties of PVDF/functionalized-PMMA blend nanocomposites: structural, optical, and morphological studies[J]. Journal of Applied Polymer Science, 136, 47116(2019).
[77] GAABOUR L H, HAMAM K A. The change of structural, optical and thermal properties of a PVDF/PVC blend containing ZnO nanoparticles[J]. Silicon, 10, 1403-1409(2018).
[78] MOHAMMED M I. Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend[J]. Journal of Molecular Structure, 1169, 9-17(2018).
[79] ANDO M, KADONO K, HARUTA M, et al. Large third-order optical nonlinearities in transition-metal oxides[J]. Nature, 374, 625-627(1995).
[80] CHEN A P, YANG G, LONG H, et al. Nonlinear optical properties of laser deposited CuO thin films[J]. Thin Solid Films, 517, 4277-4280(2009).
[81] SHANSHOOL H M, YAHAYA M, YUNUS W M M, et al. Influence of CuO nanoparticles on third order nonlinearity and optical limiting threshold of polymer/ZnO nanocomposites[J]. Optical and Quantum Electronics, 49, 18(2017).
[82] SENGWA R J, DHATARWAL P, CHOUDHARY S. A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices[J]. Materials Today Communications, 25, 101380(2020).
[83] AL-HAZMI F S, DE LEEUW D M, AL-GHAMDI A A, et al. Evaluation of the spectroscopic ellipsometry and dielectric properties of Cr2O3 nanoparticles doped PVDF thin films for future application of organic ferroelectric junctions[J]. Optik, 138, 207-213(2017).
[84] VEVED A, EJUH G W, DJONGYANG N. Effect of HfO2 on the dielectric, optoelectronic and energy harvesting properties of PVDF[J]. Optical and Quantum Electronics, 51, 330(2019).
[85] ALOMARI A, BATRA A K, ARUN K J. Optical and electronic characterization of P(VDF-TrFE)/La2O3 nanocomposite films[J]. Optik, 127, 10335-10342(2016).
[86] CHIPARA D, KUNCSER V, LOZANO K, et al. Spectroscopic investigations on PVDF-Fe2O3 nanocomposites[J]. Journal of Applied Polymer Science, 137, 48907(2020).
[87] LI W P, CHEN Y Q, YAO L, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation[J]. Desalination, 478, 114288(2020).
[88] AGUIAR L W, BOTERO E R, CARVALHO C T, et al. Study of the changes in the polar phase and optical properties of poly (vinylidene fluoride) matrix by neodymium compound addition[J]. Materials Today Communications, 25, 101274(2020).
[89] OLIVEIRA J, MARTINS P M, MARTINS P, et al. Increasing X-ray to visible transduction performance of Gd2O3: Eu3+PVDF composites by PPO/POPOP addition[J]. Composites Part B:Engineering, 91, 610-614(2016).
[90] GUO W L, YIN J, QIU H, et al. Friction of low-dimensional nanomaterial systems[J]. Friction, 2, 209-225(2014).
[91] KÜRÜM U, EKIZ O Ö, YAGLIOGLU H G, et al. Electrochemically tunable ultrafast optical response of graphene oxide[J]. Applied Physics Letters, 98, 141103(2011).
[92] ZHANG H, VIRALLY S, BAO Q L, et al.
[93] LI W ZH. Research progress of carbon nanotubes[J]. Optics & Optoelectronic Technology, 14, 10-15(2016).
[94] LI T, TANG J L, FANG F, . Carbon quantum dots: synthesis, properties and applications[J]. Journal of Functional Materials, 46, 9012-9018,9025(2015).
[95] HUANG W W, EDENZON K, FERNANDEZ L, et al. Nanocomposites of poly(vinylidene fluoride) with multiwalled carbon nanotubes[J]. Journal of Applied Polymer Science, 115, 3238-3248(2010).
[96] LIM Y, LEE S. Phase transition and improvement of output efficiency of the PZT/PVDF Piezoelectric device by adding carbon nanotubes[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 31, 94-97(2018).
[97] PRATIHAR S, PATRA A, SASMAL A, et al. Enhanced dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of ZnO-PVDF composites induced by MWCNTs as an additive third phase[J]. Soft Matter, 17, 8483-8495(2021).
[98] BEGUM S, ULLAH H, AHMED I, et al. Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs[J]. Composites Science and Technology, 211, 108841(2021).
[99] SABIRA K, SAHEEDA P, DIVYASREE M C, et al. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films[J]. Optics & Laser Technology, 97, 77-83(2017).
[100] ISMAIL A M, MOHAMMED M I, FOUAD S S. Optical and structural properties of polyvinylidene fluoride (PVDF)/reduced graphene oxide (RGO) nanocomposites[J]. Journal of Molecular Structure, 1170, 51-59(2018).
[101] RAM R, RAHAMAN M, KHASTGIR D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity[J]. Composites Part A:Applied Science and Manufacturing, 69, 30-39(2015).
[102] BAIBARAC M, DAESCU M, MATEI E, et al. Optical properties of composites based on poly(o-phenylenediamine), poly(vinylenefluoride) and double-wall carbon nanotubes[J]. International Journal of Molecular Sciences, 22, 8260(2021).
[103] VERKHOVSKAYA K A, CHUMAKOVA S P, SAVELEV V V, et al. The photorefractive and photovoltaic properties of a composite based on ferroelectric polymer doped with carbon nanotubes[J]. Crystallography Reports, 63, 802-805(2018).
[104] DONG L, XIONG ZH R, LIU X D, et al. Synthesis of carbon quantum dots to fabricate ultraviolet‐shielding poly(vinylidene fluoride) films[J]. Journal of Applied Polymer Science, 136, 47555(2019).
[105] BADAWI A, ALHARTHI S S, MOSTAFA N Y, et al. Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications[J]. Applied Physics A, 125, 858(2019).
[106] BODKHE S, RAJESH P S M, KAMLE S, et al. Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay[J]. Journal of Polymer Research, 21, 434(2014).
[107] VISWANATH P, RAMBHATLA P V, KIRAN P S, et al. Third order nonlinear optical properties of β enhanced PVDF based nanocomposite thin films[J]. Journal of Materials Science: Materials in Electronics, 30, 12447-12455(2019).
[108] LIU L X, DONG J H, ZHANG G H, . Preparation and properties of polyvinylidene fluoride@diatomite fiber membranes by eletrospinning as separator of lithium-ion batteries[J]. Chinese Journal of Applied Chemistry, 37, 1441-1446(2020).
[109] SINGH N B, SHARMA H B, PHANJOUBAM S. Optical properties of sol-gel processed BaTiO3/PVDF nanocomposite thin films[J]. AIP Conference Proceedings, 1372, 332-336(2011).
[110] SHARMA M, QUAMARA J K, GAUR A. Behaviour of multiphase PVDF in (1-x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties[J]. Journal of Materials Science:Materials in Electronics, 29, 10875-10884(2018).
[111] EL-METWALLY E G, NASRALLAH D A, FADEL M. The effect of Li4Ti5O12 nanoparticles on structural, linear and third order nonlinear optical properties of PVDF films[J]. Materials Research Express, 6, 085312(2019).
[112] PINTO T V, CARDOSO N, COSTA P, et al. Light driven PVDF fibers based on photochromic nanosilica@naphthopyran fabricated by wet spinning[J]. Applied Surface Science, 470, 951-958(2019).
[113] GEORGE R, THOMAS S, SIMON S M, et al. Sm3+ -doped PVDF-SiO2 hybrid for greenish-blue light emission[J]. Materials Today:Proceedings, 33, 1384-1388(2020).
[114] EL-SAYED S. Optical properties and dielectric relaxation of polyvinylidene fluoride thin films doped with gadolinium chloride[J]. Physica B:Condensed Matter, 454, 197-203(2014).
[115] GAUR A M, RANA D S. Structural, optical and electrical properties of MgCl2 doped polyvinylidene fluoride (PVDF) composites[J]. Journal of Materials Science:Materials in Electronics, 26, 1246-1251(2015).
[116] EL-KHODARY A, ABDELAZIZ M, HASSAN G M. Crystal structure and physical properties of PVDF films filled with CuCl2-MnCl2 mixed fillers[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 54, 633-650(2005).
[117] SHALTOUT A A, MOSTAFA N Y, MAHANI R M, et al. Investigation of structural and optical properties of molybdenum disulfide flakes/polyvinylidene fluoride nanocomposites[J]. Journal of Materials Research and Technology, 9, 14350-14359(2020).
[118] YESAPPA L, NIRANJANA M, ASHOKKUMAR S P, et al. Optical properties and ionic conductivity studies of an 8 MeV electron beam irradiated poly(vinylidene fluoride-
[119] TAWANSI A, ORABY A H, BADR S I, et al. Physical properties and β‐phase increment of AgNO3‐filled poly(vinylidene fluoride) films[J]. Polymer International, 53, 370-377(2004).
[120] ZHANG L, XIAO D Q, MA J. Dielectric properties of PVDF/Ag/BaTiO3 composites[J]. Ferroelectrics, 455, 77-82(2013).
[121] CHEN L, HUANG J, YAN L, . Preparation and properties of PVDF based dielectric nanocomposites containing multi-scale functional fillers[J]. Chinese Journal of Materials Research, 34, 835-844(2020).
[122] YU K, HU SH, YU W D, et al. Dielectric and piezoelectric properties of 0.970(0.95(K0.485Na0.515)NbO3-0.05LiSbO3)-0.015CuO-0.015Al2O3/PVDF 0-3 composite reinforced with two kinds of ZnO powder[J]. Optical and Quantum Electronics, 51, 336(2019).
[123] YANG L, QIU J H, JI H L, et al. Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites[J]. Composites Part A:Applied Science and Manufacturing, 65, 125-134(2014).
[124] WITTINANON T, RIANYOI R, CHAIPANICH A. Effect of polyvinylidene fluoride on the fracture microstructure characteristics and piezoelectric and mechanical properties of 0-3 barium zirconate titanate ceramic-cement composites[J]. Journal of the European Ceramic Society, 40, 4886-4893(2020).
[125] MA A T, FU CH, CHU H Y, . Fabrication and piezoelectric properties of polyvinylidene fluoride composites with high
[126] WANG H, WANG J, XIANG X, et al. Preparation of PVDF/CdS/Bi2WO6/ZnO hybrid membrane with enhanced visible-light photocatalytic activity for degrading nitrite in water[J]. Environmental Research, 191, 110036(2020).
[127] DONG L, LIU X D, XIONG ZH R, . Preparation of macromolecular ultra-violet absorber and its application in poly(vinylidene fluoride)[J]. Chinese Journal of Applied Chemistry, 35, 776-780(2018).
[128] SU H B, STRACHAN A, GODDARD III W A. Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers: PVDF and P(VDF-TrFE)[J]. Physical Review B, 70, 064101(2004).
[129] HEO W J, KIM W J, SHIN Y H, et al. Density functional study of α-β phase transition of polyvinylidene difluoride[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 6, 217-219(2012).
[130] LI J C, WANG C L, YANG K, et al. Electronic structure of α and β-phase of poly (vinylidene fluoride)[J]. Integrated Ferroelectrics, 78, 27-33(2006).
[131] ROWAN C K, PACI I. Optical properties of Ag/polyvinylidene fluoride nanocomposites: a theoretical study[J]. The Journal of Physical Chemistry C, 115, 8316-8324(2011).
[132] CHENG H P, CHEN G H, QIN R, . Electronic structures and optical properties of poly(vinylidene fluoride) crystals[J]. Acta Physico-Chimica Sinica, 30, 281-288(2014).
[133] DONG R, RANJAN V, NARDELLI M B, et al. First-principles simulations of PVDF copolymers with high dielectric energy density: PVDF-HFP and PVDF-BTFE[J]. Physical Review B, 94, 014210(2016).
[134] GUO M F, GUO CH Q, HAN J, et al. Toroidal polar topology in strained ferroelectric polymer[J]. Science, 371, 1050-1056(2021).
Get Citation
Copy Citation Text
Yong LIU, Wei-guo LIU, Xiao-ling NIU, Ying-xue HUI, Zhong-hua DAI, Zhi-heng WANG, Wen-hao GUO. Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films[J]. Chinese Optics, 2022, 15(4): 640
Category: Review
Received: Nov. 2, 2021
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: