Chinese Optics, Volume. 15, Issue 4, 640(2022)
Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films
Fig. 1. Schematic illustration of the Z-scan technique. (a) The principle of the Z-scan technique: Ⅰ-the wavefront deformation of Gaussian beam when entering nonlinear materials, Ⅱ-the Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the sample position Z, D1 and D2 are photodetectors[20]; (b) setup for second and third harmonic generation by means of the Maker fringe technique[21]; (c) the principle of barycentric scan technique[24]
Fig. 3. Schematic illustration of classical research on nonlinear optics of PVDF and its copolymer optical thin films. (a) Sample geometry and orientation for SHG measurements on PVDF film. The direction of the laser beam propagation corresponds to
Fig. 4. NLO properties of PVDF/metallic oxide nanocomposites films. (a) The transmittance of PMMA/PVDF-ZnO nanocomposites[78]; (b) linear absorption coefficient spectra of PVDF/ZnO/CuO nanocomposites[81]; (c) plots (direct band gap) for PVDF pristine and PVDF-ZnO Nanocomposites[73]; (d) the normalized transmittance as a function of sample position in open-aperture Z-scan for PVDF/ZnO nanocomposites [74]
Fig. 5. NLO properties of PVDF/low-dimensional carbon materials films. (a) Optical limiting graphs for PVDF/RGO films with different concentrations of RGO[93]; (b) transmittance of pristine PVDF and PVDF-RGO nanocomposites[100]; (c) transparency camera image for PVDF/MWCNT composites films[101] with different concentration of MWCNT: (ⅰ) pure PVDF, quality score is (ⅱ) 1%, (ⅲ) 2%, (ⅳ) 5%; (d) transmittance of the modified CQDs/PVDF nanocomposite films before and after 200 h of UV exposure[104]
Fig. 6. NLO properties of PVDF films doped with inorganic nonmetallic crystals, metallic salts, and composite fillers. (a) Schematics of TTTT(PVDF) configuration on HNTs[107]; (b) SEM micrographs of PVDF@SiO2@S1[113]; (c) transmittance of the PVDF/ HNTs films with Overlaid Z-scan curves[107]; (d) refractive index for pure PVDF and Li4Ti5O12/PVDF nanocomposites[111]; (e) direct bandgap of the MoS2 doped in PVDF nanocomposite samples[117]; (f) FTIR spectrums of TiO2@MWCNTs/PVDF composites[123]
Fig. 7. Quantum chemical calculation for PVDF and its copolymers films. (a) Snapshot of a Ag/PVDF1250 nanocomposites simulation cell. Silver atoms are shaded gray, fluorine blue, carbon red, and hydrogen green[131]; (b) the normal reflectance (
|
|
|
|
Get Citation
Copy Citation Text
Yong LIU, Wei-guo LIU, Xiao-ling NIU, Ying-xue HUI, Zhong-hua DAI, Zhi-heng WANG, Wen-hao GUO. Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films[J]. Chinese Optics, 2022, 15(4): 640
Category: Review
Received: Nov. 2, 2021
Accepted: --
Published Online: Sep. 6, 2022
The Author Email: