Chinese Optics, Volume. 15, Issue 4, 640(2022)

Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films

Yong LIU, Wei-guo LIU*, Xiao-ling NIU, Ying-xue HUI, Zhong-hua DAI, Zhi-heng WANG, and Wen-hao GUO
Author Affiliations
  • Shaanxi Provincial Key Laboratory of Thin Films Technology and Optical Test, Xi’an Technological University, Xi’an 710021, China
  • show less
    Figures & Tables(11)
    Schematic illustration of the Z-scan technique. (a) The principle of the Z-scan technique: Ⅰ-the wavefront deformation of Gaussian beam when entering nonlinear materials, Ⅱ-the Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the sample position Z, D1 and D2 are photodetectors[20]; (b) setup for second and third harmonic generation by means of the Maker fringe technique[21]; (c) the principle of barycentric scan technique[24]
    Classification of PVDF and its copolymers optical films
    Schematic illustration of classical research on nonlinear optics of PVDF and its copolymer optical thin films. (a) Sample geometry and orientation for SHG measurements on PVDF film. The direction of the laser beam propagation corresponds to k[4]. (b) The attenuation constants k||and k┴ and the refractive indices n|| and n┴ of the LB films obtained from the IR-VASE (Variable angle spectrometer ellipsometry) data analysis[57]. (c) Maker fringes obtained by rotating the planar samples around a vertical axis, with a horizontal polarization of the incident beam. Above: evidence of phase matching at an incidence angle of 67.8° in Eugenol when the incident polarization is vertical. The SHG polarization is still horizontal. Below: Maker fringes obtained by rotating the poled copolymer film around a vertical axis in a transparent cell filled with Eugenol. The incident polarization and the SHG polarization are horizontal[52]. (d) SHG fringes pattern obtained when wedge sample is translated parallel to its length across laser beam (fundamental)[4]
    NLO properties of PVDF/metallic oxide nanocomposites films. (a) The transmittance of PMMA/PVDF-ZnO nanocomposites[78]; (b) linear absorption coefficient spectra of PVDF/ZnO/CuO nanocomposites[81]; (c) plots (direct band gap) for PVDF pristine and PVDF-ZnO Nanocomposites[73]; (d) the normalized transmittance as a function of sample position in open-aperture Z-scan for PVDF/ZnO nanocomposites [74]
    NLO properties of PVDF/low-dimensional carbon materials films. (a) Optical limiting graphs for PVDF/RGO films with different concentrations of RGO[93]; (b) transmittance of pristine PVDF and PVDF-RGO nanocomposites[100]; (c) transparency camera image for PVDF/MWCNT composites films[101] with different concentration of MWCNT: (ⅰ) pure PVDF, quality score is (ⅱ) 1%, (ⅲ) 2%, (ⅳ) 5%; (d) transmittance of the modified CQDs/PVDF nanocomposite films before and after 200 h of UV exposure[104]
    NLO properties of PVDF films doped with inorganic nonmetallic crystals, metallic salts, and composite fillers. (a) Schematics of TTTT(PVDF) configuration on HNTs[107]; (b) SEM micrographs of PVDF@SiO2@S1[113]; (c) transmittance of the PVDF/ HNTs films with Overlaid Z-scan curves[107]; (d) refractive index for pure PVDF and Li4Ti5O12/PVDF nanocomposites[111]; (e) direct bandgap of the MoS2 doped in PVDF nanocomposite samples[117]; (f) FTIR spectrums of TiO2@MWCNTs/PVDF composites[123]
    Quantum chemical calculation for PVDF and its copolymers films. (a) Snapshot of a Ag/PVDF1250 nanocomposites simulation cell. Silver atoms are shaded gray, fluorine blue, carbon red, and hydrogen green[131]; (b) the normal reflectance (R) of Ag/PVDF nanocomposites materials: (i) and (ii) are incident light along the z- and x-axes; (iii) present the respective optical properties of Ag-nanoparticles in vacuum, with incident fields along the z- and x-axes[131]; (c) the two-step transition pathway connecting the nonpolar α phase and the polar γ and β phases, the top panels show the conversion to the γ phase through a rotation of one chain, the bottom panel illustrates dihedral angle changes in the TGTG chain as it transforms to the T chain of the β phase. Red arrows indicate the directions of the dipole moments while black double arrows indicate the geometrical progression[130]; (d) calculated dispersion curves for the d-coefficients and (e) the refractive indices of PVDF. Labels a, b, and c represent the photon polarization directions along the crystal axes a, b, and c, respectively;[70] (f)theoretically calculated refractive index of PVDF[132]
    • Table 1. Optical characteristics of PVDF and its copolymer films

      View table
      View in Article

      Table 1. Optical characteristics of PVDF and its copolymer films

      Refractive index second-harmonic coefficients Intrinsic Birefringences[51]Coherent wavelength
      gFibers α(Ⅱ) β(Ⅰ) γ(Ⅲ)
      a: Preparation with Spin-coating; b: Preparation with LB method; c. Calculations based on the formalism of Hughes and Sipe; d: Calculations based on Bunn, Denbigh (C-C, C-H) and Denbigh (C-F); e: Calculations based on Bunn, Denbigh (C-C, C-H) and Vogel(C-F); f: Calculations based on Denbigh (C-C, C- H) and LeFevre and LeFevre (C-F). g: Birefrigence of Melt-Spun PVDF Fibers before (above) and after (below) the poled films (Clod-Drawing, Elongated-40%)
      a1.42[51]a1.425[46]a1.41−1.49[54]b1.408[71]b1.404−1.540[68]a1.99[69]a1.4−1.9[55]d33: 0.22 pm/V [52]d31: 0.05 pm/V[52]b−35 pm/V[55]bd33: −40 pm/V[60]; bd33: −20±2 pm/V[60 ]; cd33: 1.66 pm/V[70]cd31: 2.01 pm/V[70]0.0302d0.0236 0.0307730.00102230 μm[46]37 μm (±3 μm)[52]
      e0.0236 0.0307730.001022
      0.0387f0.0950 0.11320.0739
      c0.0082[70]
      electro-optic coefficients(EO)Elasto-optic coefficientsquadratic electro-optic coefficients
      $\left| {r_{51}^x } \right|$[50]0.10×10−12 mV−1$ \left| {\mathop \pi \nolimits_{11}^E - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop \pi \nolimits_{12}^E } \right| $[50]3.6×10−12m2N−1$ \left| {\mathop g\nolimits_{44}^x } \right| $0.02 m4C−2 [50]
      [70] 0.23×10−12 mV−121 m4C−2[59]
      $\left| {r_{42}^x } \right|$[50]0.21×10−12 mV−1$ \left| {\mathop h\nolimits_{55}^x } \right| $6.8×10−23 m2V−2[50]
      [70] 1.78×10−12 mV−14.11×10−18 m2V−2[59]
      $ \left| {\mathop r\nolimits_{13}^x - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop r\nolimits_{23}^x } \right| $[50]0.38×10−12 mV−1$ \left| {\mathop \pi \nolimits_{21}^E - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop \pi \nolimits_{22}^E } \right| $[50]1.8×10−12 m2N−1$ \left| {\mathop g\nolimits_{13}^x - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop g\nolimits_{23}^x } \right| $[50]0.01 m4C−2
      [70] 1.48×10−12 mV−1$ \left| {\mathop h\nolimits_{13}^x - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop h\nolimits_{23}^x } \right| $[59]26×10−23 m2V−2
    • Table 2. Linear optical and nonlinear optical parameters of PVDF/MO (metallic oxide) nanocomposites films

      View table
      View in Article

      Table 2. Linear optical and nonlinear optical parameters of PVDF/MO (metallic oxide) nanocomposites films

      Nonlinear optical parameters
      Note:P-PVDF, 1- ac activation energy (Eac), 2-dc activation energy (Edc), Ed-Direct band gap, Ei-Indirect optical band gap, n-linear refractive index (λ≈633 nm), Ea-optical activation energy, Ef-Fermi energy, n2-nonlinear refractive index (cm2/W×10−13), β-nonlinear absorption coefficient (two-photon, cm/W×10−8), α-linear absorption coefficient, transmittance, εr-dielectric constant, χ(3)-third order nonlinear optical susceptibility(10-6esu), Leff-effective length of the sample(10−3 cm), ΔΦ0-the nonlinear phase shift, k-the extenction coeffecient (λ≈633 nm), p-average polarizability (C2 m2J−1×10−39), β′-first hyperpolarizability(C3 m3J−2×10−51), -anisotropy (C2 m2J−1×10−39), V-ZnO: ZnO doped with vanadium, S- ZnO: ZnO doped with sulfur, Dy-ZnO:ZnO doped with dysprosium.
      SamplesLeffβεrn2ΔΦ0Ed (eV) Ei (eV) Ea(eV) |χ(3)|
      P/ZnO [81]1.051[81]0.2339~0.30405[73]1.942[81]17.58~2.064[73]3.15~4.91[81]−1.624[81]−4.562~ 12.22[73]0.181[81]0.147~ 0.29[74]5.57~4.95[73]3.24[81]4.76~3.35[73]1.16[73]0.7145[73]
      P/ZnO/CuO [81]0.8624.740−3.2200.2941.4039
      Samplesβ'εrnpEd (eV) Ef (eV)
      P/ZrO2[69]3396.8~26.103.97~5.831.99~2.411.62~7.271.53~5.892.94~0.760.34~9.29
      Linear optical parameters
      SamplesεrnkSamplesTεr
      P/CrO2[83]2.77−5.831.395~1.430.005~0.03P/Gd2O3: Eu3+[89]82%~85%7~7.5
      P/PPO/POPOPGd2O3:Eu3+[89]75%~77%12~15
      Samples[82]αεrEd (eV) Samples[76]αEd (eV) Ei (eV)
      P/PEO-Al2O30.993.56~6.354.91P/PMMA-V-ZnO0.88~0.60[78]2.82.5
      P/PEO-SnO20.992.7~4.684.62P/PMMA-S-ZnO0.82~0.60[78]3.02.8
      P/PEO-TiO20.9823.08~5.053.53P/PMMA-Dy-ZnO0.78~0.60[78]2.52.2
      SamplesαnEd (eV) Ei (eV) k(10−2) Tεr
      P/PMMA-ZnO [78]0.975~0.602 [78]0.83~0.40[76]1.29~1.54[78]5.22~5.75[78]2.9[76]2.6[78]0.018~0.06[78]35%~40%[78]2.37~1.67[78]
      P/PMMA [78]0.44[78]0.50~0.35[76]1.21~1.22[78]5.85[78]4.4[76]3.7[76]0.01[76]65%~70%[76]1.46[76]
      SamplesαεrEd (eV) Ea(eV) Samplesα
      La2O3/P-TrFE[85]0.968~0.9961633.15~2.8010.20~0.15;20.84~0.41 P/Nd2O3[88]0.90
      Fe3O4/P-HFP[87]0.90
    • Table 3. Linear optical and nonlinear optical parameters of PVDF/low-dimensional carbon materials nanocomposites films

      View table
      View in Article

      Table 3. Linear optical and nonlinear optical parameters of PVDF/low-dimensional carbon materials nanocomposites films

      Nonlinear optical parameters
      Note:P-PVDF, Ed-direct band gap, Ei-indirect optical band gap, n-linear refractive index (λ≈633 nm), n2-nonlinear refractive index (cm2/W×10−10), β-Nonlinear absorption coefficient (two-photon, cm/GW), α-linear absorption coefficient, T-transmittance (λ≈633 nm), χ(3): third-order nonlinear optical susceptibility (10−11 esu), Imχ(3); The imaginary part of third-order nonlinear optical susceptibility (10−11 esu), Pth-optical limiting threshold power (MW/cm2).
      samplesβn2PthImχ(3)|χ(3)|
      P/RGO[99]195−4003.410−6.2708.4−7.846.19−12.956.2−12.96
      Linear optical parameters
      samplesαnEd (eV) Ei (eV) T
      P/RGO[100]83%−99%1.8−2.25−4.34.4−3.230%−1%
      PVDF/CQDs[105]90%−98.5%1.22−1.552.96−5.001.16−4.324%−12%
      samplesT
      P-OH@CQDs/PVA [104]88%(300−800 nm)
      PVDF/MWCNT[101]0(5%CNT)、22%(2%CNT)、48%(1%CNT)
    • Table 4. Linear optical and nonlinear optical parameters of PVDF/inorganic nonmetallic crystalline materials nanocomposites films

      View table
      View in Article

      Table 4. Linear optical and nonlinear optical parameters of PVDF/inorganic nonmetallic crystalline materials nanocomposites films

      Nonlinear optical parameters
      Note:P-PVDF, Ed−Direct band gap, Ei−Indirect optical band gap, n-Linear refractive index (λ≈633 nm), n2− nonlinear refractive index (cm2/W×10−12), T-transmittance (λ≈633 nm), χ(3): third-order nonlinear optical susceptibility (10−8esu), α-linear absorption coefficient, Pth−optical limiting threshold power (MW/cm2), Leff: the effective length (μm); Δφ0: the on-axis nonlinear phase shift at the focus; n: the long wavelength refractive index, λ0: the average oscillator wavelength, S0: average oscillator strength (1014 m−2), ε: high-frequency dielectric constant, N/m*: free carriers ratio (×1057 m−3), ωp: the plasma frequency (1014 s−1), n-Linear refractive index (λ≈633nm), k-the extension coefficient (10−3, 220 nm<λ<380 nm).
      samplesΔφ0Leffn2χ3
      Pristine PVDF[107]2.0524.3−3.13−1.7872
      P/HNT[107]0.59−2.213.9−20.41.24−4.891.2075−8.9922
      samplesnλ0(nm) S0εN/m* ωp
      Li4Ti5O12[111]2.78213.621.478.150.4724.09
      P/Li4Ti5O12[111]3.50−7.32269.68−291.601.55−6.1915.64−74.833.684−35.608.25−11.67
      Linear optical parameters
      SamplesαEi (eV)
      200 nm<λ<400 nm400 nm<λ<800 nm
      BaTiO3[110]0.990.6843.6
      (0.8)PVDF/(0.2)BaTiO3[110]0.9990.9972.9
      0.6PVDF/0.4BaTiO3[110]0.9990.9992.4
      1PVDF/5BaTiO3[109]0.9−0.50.2−0.53.85−3.3
    Tools

    Get Citation

    Copy Citation Text

    Yong LIU, Wei-guo LIU, Xiao-ling NIU, Ying-xue HUI, Zhong-hua DAI, Zhi-heng WANG, Wen-hao GUO. Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films[J]. Chinese Optics, 2022, 15(4): 640

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Review

    Received: Nov. 2, 2021

    Accepted: --

    Published Online: Sep. 6, 2022

    The Author Email:

    DOI:10.37188/CO.2021-0191

    Topics