Laser & Optoelectronics Progress, Volume. 61, Issue 7, 0706004(2024)

Research Progress on Liquid Crystal Optical Phased Array Technology for Laser Communication (Invited)

Xiaoxian He1, Siyu Zhou1, Jixiang Zhao2, and Xiangru Wang1、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
  • 2School of Software, Xinjiang University, Urumqi 830091, Xinjiang, China
  • show less
    References(76)

    [1] McManamon P F, Watson E A, Dorschner T A et al. Nonmechanical beam steering for active and passive sensors[J]. Proceedings of SPIE, 1969, 2-10(1993).

    [2] McManamon P F. Agile nonmechanical beam steering[J]. Optics & Photonics News, 17, 24-29(2006).

    [3] McManamon P F, Watson E A. Optical beam steering using phased array technology[J]. Proceedings of SPIE, 3131, 90-98(1997).

    [4] Serati S, Harriman J. Spatial light modulator considerations for beam control in optical manipulation applications[J]. Proceedings of SPIE, 6326, 63262W(2006).

    [5] Linnenberger A, Serati S, Stockley J. Advances in optical phased array technology[J]. Proceedings of SPIE, 6304, 63040T(2006).

    [6] Thomas J A, Fainman Y. Programmable diffractive optical element using a multichannel lanthanum-modified lead zirconate titanate phase modulator[J]. Optics Letters, 20, 1510-1512(1995).

    [7] Vasey F, Reinhart F K, Houdré R et al. Spatial optical beam steering with an AlGaAs integrated phased array[J]. Applied Optics, 32, 3220-3232(1993).

    [8] Sun C M, Yang L S, Li B H et al. Parallel emitted silicon nitride nanophotonic phased arrays for two-dimensional beam steering[J]. Optics Letters, 46, 5699-5702(2021).

    [9] Sun C M, Li B H, Shi W et al. Large-scale and broadband silicon nitride optical phased arrays[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 8200710(2022).

    [10] Gilbreath G C, Rabinovich W S, Meehan T J et al. Progress in development of multiple-quantum-well retromodulators for free-space data links[J]. Optical Engineering, 42, 1611-1617(2003).

    [11] Piwonski T, Pulka J, Viktorov E A et al. Refractive index dynamics of quantum dot based waveguide electroabsorbers[J]. Applied Physics Letters, 97, 051107(2010).

    [12] Yoo B W, Megens M, Chan T et al. Optical phased array using high contrast gratings for two dimensional beamforming and beamsteering[J]. Optics Express, 21, 12238-12248(2013).

    [13] Wang Y M, Zhou G Y, Zhang X S et al. 2D broadband beamsteering with large-scale MEMS optical phased array[J]. Optica, 6, 557-562(2019).

    [14] McManamon P F, Ataei A. Progress and opportunities in the development of nonmechanical beam steering for electro-optical systems[J]. Optical Engineering, 58, 120901-120901(2019).

    [15] Wang Q, Gao X F, Zhang D W et al. Research progress in liquid crystal optical phased array technology[J]. Laser & Optoelectronics Progress, 58, 1700007(2021).

    [16] Guo H R, Wang X R, Li J et al. Research review on the development of liquid crystal optical phased array device on the application of free space laser communication[J]. Proceedings of SPIE, 10841, 108410C(2019).

    [17] Notaros M, Coleto A G, Raval M et al. Integrated liquid-crystal-based variable-tap devices for visible-light amplitude modulation[J]. Optics Letters, 49, 1041-1044(2024).

    [18] Escuti M J, Kim J, Oh C et al. Beam steering devices including stacked liquid crystal polarization gratings and related methods of operation[P].

    [19] Huang Y W, Wang K Z, He X X et al. Fast, closed-loop iterative system-on-chip of deflection efficiency enhancement for a liquid crystal optical phased array[J]. Applied Optics, 61, 1583-1592(2022).

    [20] Liang Z Q, Huang Y W, He X X et al. Four-access, 80 mm aperture all phase-controlled liquid crystal laser antenna[J]. Optical Engineering, 61, 105113(2022).

    [21] Serati S, Masterson H, Linnenberger A. Beam combining using a phased array of phased arrays (PAPA)[C](2004).

    [22] McManamon P F, Bos P J, Escuti M J et al. A review of phased array steering for narrow-band electrooptical systems[J]. Proceedings of the IEEE, 97, 1078-1096(2009).

    [23] Song Y, Kong L J, Chen J et al. Improvement for the steering performance of liquid crystal phased array[J]. Optoelectronics Letters, 5, 177-181(2009).

    [24] Wu L, Wang X R, Xiong C D et al. Design and experimental demonstration on improved high order grating for wide angle beam steering of liquid crystal optical phased array[J]. Proceedings of SPIE, 10096, 100960Q(2017).

    [25] Zhuo R S. Study on the realization method of large aperture liquid crystal optical phased array[D](2018).

    [26] Vorontsov M. Adaptive photonics phase-locked elements (APPLE): system architecture and wavefront control concept[J]. Proceedings of SPIE, 5895, 589501(2005).

    [27] He X X, Wang X R, Wu L et al. Aperture scalable liquid crystal optically duplicated array of phased array[J]. Optics Communications, 451, 174-180(2019).

    [28] Kim J, Oh C, Escuti M J et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings[J]. Proceedings of SPIE, 7093, 709302(2008).

    [29] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society of London A Mathematical and Physical Sciences, 392, 45-57(1984).

    [31] Kim J, Miskiewicz M N, Serati S et al. High efficiency quasi-ternary design for nonmechanical beam-steering utilizing polarization gratings[J]. Proceedings of SPIE, 7816, 78160G(2010).

    [32] Kim J, Miskiewicz M N, Serati S et al. Demonstration of large-angle nonmechanical laser beam steering based on LC polymer polarization gratings[J]. Proceedings of SPIE, 8052, 80520T(2011).

    [33] Liang Z Q. Research on the expansion method of beam pointing range of liquid crystal optical phased array[D](2022).

    [34] Xun X D, Cho D J, Cohn R W. Spiking voltages for faster switching of nematic liquid-crystal light modulators[J]. Applied Optics, 45, 3136-3143(2006).

    [35] Hu H B, Hu L F, Peng Z H et al. Advanced single-frame overdriving for liquid-crystal spatial light modulators[J]. Optics Letters, 37, 3324-3326(2012).

    [36] Guo H Y, Du S P. Influence of driving voltage on phase modulation of nematic liquid crystal[J]. Foreign Electronic Measurement Technology, 36, 28-31(2017).

    [37] Guo H Y, Du S P, Huang Y M et al. FPGA implementation of the overdriving method of liquid crystal spatial light modulator[J]. Infrared and Laser Engineering, 48, 0722002(2019).

    [38] Fan Y H, Lin Y H, Ren H W et al. Fast-response and scattering-free polymer network liquid crystals for infrared light modulators[J]. Applied Physics Letters, 84, 1233-1235(2004).

    [39] Sun J, Xianyu H Q, Chen Y et al. Submillisecond-response polymer network liquid crystal phase modulators at 1.06-μm wavelength[J]. Applied Physics Letters, 99, 021106(2011).

    [40] Sun J, Chen Y, Wu S T. Submillisecond-response and scattering-free infrared liquid crystal phase modulators[J]. Optics Express, 20, 20124-20129(2012).

    [41] Li Y, Yang Z Y, Chen R et al. Submillisecond-response polymer network liquid crystal phase modulators[J]. Polymers, 12, 2862(2020).

    [42] Yan J, Wu S T. Polymer-stabilized blue phase liquid crystals: a tutorial[J]. Optical Materials Express, 1, 1527-1535(2011).

    [43] Yan J, Li Y, Wu S T. High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal[J]. Optics Letters, 36, 1404-1406(2011).

    [44] Hyman R M, Lorenz A, Morris S M et al. Polarization-independent phase modulation using a blue-phase liquid crystal over silicon device[J]. Applied Optics, 53, 6925-6929(2014).

    [45] Meyer R B, Liebert L, Strzelecki L et al. Ferroelectric liquid crystals[J]. Journal De Physique Lettres, 36, 69-71(1975).

    [46] Srivastava A K, Hu W, Chigrinov V G et al. Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals[J]. Applied Physics Letters, 101, 031112(2012).

    [47] Guo Q, Zhao X J, Zhao H J et al. Reverse bistable effect in ferroelectric liquid crystal devices with ultra-fast switching at low driving voltage[J]. Optics Letters, 40, 2413-2416(2015).

    [48] Huang Y H, Wen C H, Wu S T. Polarization-independent and submillisecond response phase modulators using a 90° twisted dual-frequency liquid crystal[J]. Applied Physics Letters, 89, 021103(2006).

    [49] Ren H W, Lin Y H, Wu S T. Polarization-independent and fast-response phase modulators using double-layered liquid crystal gels[J]. Applied Physics Letters, 88, 061123(2006).

    [50] Nie X Y, Wu T X, Lu Y Q et al. Dual-frequency addressed infrared liquid crystal phase modulators with submillisecond response time[J]. Molecular Crystals and Liquid Crystals, 454, 123-133(2006).

    [51] Duan W, Chen P, Wei B Y et al. Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating[J]. Optical Materials Express, 6, 597-602(2016).

    [52] Duan W, Chen P, Ge S J et al. A fast-response and helicity-dependent lens enabled by micro-patterned dual-frequency liquid crystals[J]. Crystals, 9, 111(2019).

    [53] Sebastián N, Cmok L, Mandle R J et al. Ferroelectric-ferroelastic phase transition in a nematic liquid crystal[J]. Physical Review Letters, 124, 037801(2020).

    [54] Chen X, Korblova E, Glaser M A et al. Polar in-plane surface orientation of a ferroelectric nematic liquid crystal: Polar monodomains and twisted state electro-optics[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104092118(2021).

    [55] Chen X, Korblova E, Dong D P et al. First-principles experimental demonstration of ferroelectricity in a thermotropic nematic liquid crystal: Polar domains and striking electro-optics[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 14021-14031(2020).

    [56] Lavrentovich O D. Ferroelectric nematic liquid crystal, a century in waiting[J]. Proceedings of the National Academy of Sciences of the United States of America, 117, 14629-14631(2020).

    [57] Zhao X H, Zhou J C, Li J X et al. Spontaneous helielectric nematic liquid crystals: electric analog to helimagnets[J]. Proceedings of the National Academy of Sciences of the United States of America, 118, e2111101118(2021).

    [58] Saha R, Nepal P, Feng C R et al. Multiple ferroelectric nematic phases of a highly polar liquid crystal compound[J]. Liquid Crystals, 49, 1784-1796(2022).

    [59] Li M F. Research on submillisecond beam control method of liquid crystal phase shifting system[D](2023).

    [60] Liu X P. Cascaded beam control method based on liquid crystal laser steering gear and LCPG[D](2020).

    [61] Luo H P, Sun C M, Li B H et al. Multi-beams forming and steering based on optical phased array[C], 110-113(2023).

    [62] Wang X R, Tan Q G, Huang Z Q et al. Dual beam formation and 2-D scan technique of liquid crystal optical phased array[J]. Laser Technology, 37, 631-635(2013).

    [63] Pan F, Kong L J, Yang X B et al. Dual beam deflection of liquid crystal optical phased array[J]. Chinese Optics Letters, 10, S020502(2012).

    [64] Xiao F, Kong L J. Optical multi-beam forming method based on a liquid crystal optical phased array[J]. Applied Optics, 56, 9854-9861(2017).

    [65] Ge L, Duelli M, Cohn R W. Enumeration of illumination and scanning modes from real-time spatial light modulators[J]. Optics Express, 7, 403-416(2000).

    [66] Leonardo R D, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).

    [67] Wu L. Research on liquid crystal optical phased array devices and beam-forming method[D](2021).

    [68] Zhuo R S, He X X, Wu L et al. Reconfigurable multiple beams forming method based on liquid crystal on silicon[J]. Optics Laser Technology, 161, 109189(2023).

    [69] Ye J Y, Yuan X C, Zhou G Y. Genetic algorithm for optimization design of diffractive optical elements in laser beam shaping[J]. Proceedings of SPIE, 4594, 118-127(2001).

    [70] Khodier M M, Christodoulou C G. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization[J]. IEEE Transactions on Antennas and Propagation, 53, 2674-2679(2005).

    [71] Liu C X, Xu W H, Zhou L J et al. Multi-agent genetic algorithm for sparse optical phased array optimization[C](2019).

    [72] Haellstig E, Stigwall J, Lindgren M et al. Laser beam steering and tracking using a liquid crystal spatial light modulator[J]. Proceedings of SPIE, 5087, 13-23(2003).

    [73] Harris S R. Numerical optimization of the performance of nematic liquid crystal optical phased arrays[J]. Proceedings of SPIE, 5162, 157-171(2003).

    [74] Liu J G, Li L, Hu X Q et al. Wavefront error correction with stochastic parallel gradient descent algorithm[J]. Proceedings of SPIE, 6834, 683413(2007).

    [75] Xiao F, Kong L J, Chen J. Beam-steering efficiency optimization method based on a rapid-search algorithm for liquid crystal optical phased array[J]. Applied Optics, 56, 4585-4590(2017).

    [76] Paine S W, Fienup J R. Machine learning for improved image-based wavefront sensing[J]. Optics Letters, 43, 1235-1238(2018).

    [77] Shpakovych M, Maulion G, Kermene V et al. Experimental phase control of a 100 laser beam array with quasi-reinforcement learning of a neural network in an error reduction loop[J]. Optics Express, 29, 12307-12318(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaoxian He, Siyu Zhou, Jixiang Zhao, Xiangru Wang. Research Progress on Liquid Crystal Optical Phased Array Technology for Laser Communication (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(7): 0706004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Fiber Optics and Optical Communications

    Received: Jan. 2, 2024

    Accepted: Jan. 31, 2024

    Published Online: Apr. 19, 2024

    The Author Email: Xiangru Wang (xiangruwang@uestc.edu.cn)

    DOI:10.3788/LOP240715

    CSTR:32186.14.LOP240715

    Topics