High Power Laser and Particle Beams, Volume. 33, Issue 6, 065011(2021)

Numerical study of atmospheric pressure Ar plasma jets under different electrode structures

Yuanyuan Jiang, Yanhui Wang, Caihui Gao, and Dezhen Wang
Author Affiliations
  • Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
  • show less
    References(24)

    [1] Belmonte T, Pintassilgo C D, Czerwiec T, et al. Oxygen plasma surface interaction in treatments of polyolefines[J]. Surface and Coatings Technology, 200, 26-30(2005).

    [2] Baik K Y, Kang H L, Kim J, et al. Non-thermal plasma jet without electrical shock for biomedical applications[J]. Applied Physics Letters, 103, 164101(2013).

    [3] Kim K, Ahn H J, Lee J H, et al. Cellular membrane collapse by atmospheric-pressure plasma jet[J]. Applied Physics Letters, 104, 013701(2014).

    [4] Naidis G V. Modelling of streamer propagation in atmospheric-pressure helium plasma jets[J]. Journal of Physics D: Applied Physics, 43, 402001(2010).

    [5] Yan Wen, Economou D J. Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250–760 Torr) and interacting with a substrate[J]. Journal of Applied Physics, 120, 123304(2016).

    [6] Lu Xinpei, Naidis G V, Laroussi M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects[J]. Physics Reports, 630, 1-84(2016).

    [8] Zhang Bo, Zhu Ying, Liu Feng, et al. The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet[J]. Plasma Science and Technology, 19, 064001(2017).

    [9] Yue Yuanfu, Pei Xuekai, Lu Xinpei. Comparison on the absolute concentrations of hydroxyl and atomic oxygen generated by five different nonequilibrium atmospheric-pressure plasma jets[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 1, 541-549(2017).

    [10] Xiong Zhongmin, Kushner M J. Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target[J]. Plasma Sources Science and Technology, 21, 034001(2012).

    [11] Maletić D, Puač N, Selaković N, et al. Time-resolved optical emission imaging of an atmospheric plasma jet for different electrode positions with a constant electrode gap[J]. Plasma Sources Science and Technology, 24, 025006(2015).

    [12] Walsh J L, Kong M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Applied Physics Letters, 93, 111501(2008).

    [13] Yan Wen, Liu Fucheng, Sang Chaofeng, et al. Two-dimensional numerical study of an atmospheric pressure helium plasma jet with dual-power electrode[J]. Chinese Physics B, 24, 065203(2015).

    [14] Judée F, Merbahi N, Wattieaux G, et al. Analysis of Ar plasma jets induced by single and double dielectric barrier discharges at atmospheric pressure[J]. Journal of Applied Physics, 120, 114901(2016).

    [15] Van Gaens W, Bruggeman P J, Bogaerts A. Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet[J]. New Journal of Physics, 16, 063054(2014).

    [16] Xu Han, Chen Chen, Liu Dingxin, et al. Contrasting characteristics of aqueous reactive species induced by cross-field and linear-field plasma jets[J]. Journal of Physics D: Applied Physics, 50, 245201(2017).

    [17] Van Gaens W V, Bogaerts A. Corrigendum: kinetic modelling for an atmospheric pressure argon plasma jet in humid air (2013 J. Phys. D: Appl. Phys. 46 275201)[J]. Journal of Physics D: Applied Physics, 47, 079502(2014).

    [18] Hagelaar G J M, Pitchford L C. Solving the Boltzmann equation to obtain electron transport coefficientsand rate coefficients for fluid models[J]. Plasma Sources Science and Technology, 14, 722-733(2005).

    [19] [19] https:us.lxcat.datasetdataset_type.php

    [20] Ellis H W, Pai R Y, McDaniel E W, et al. Transport properties of gaseous ions over a wide energy range[J]. Atomic Data and Nuclear Data Tables, 17, 177-210(1976).

    [21] Breden D, Miki K, Raja L L. Computational study of cold atmospheric nanosecond pulsed helium plasma jet in air[J]. Applied Physics Letters, 99, 111501(2011).

    [22] Breden D, Raja L L. Computational study of the interaction of cold atmospheric helium plasma jets with surfaces[J]. Plasma Sources Science and Technology, 23, 065020(2014).

    [23] Wang Lijun, Zheng Yashuang, Jia Shenli. Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material[J]. Physics of Plasmas, 23, 103504(2016).

    [24] Yan Wen, Economou D J. Gas flow rate dependence of the discharge characteristics of a helium atmospheric pressure plasma jet interacting with a substrate[J]. Journal of Physics D: Applied Physics, 50, 415205(2017).

    [25] Jánský J, Le Delliou P, Tholin F, et al. Experimental and numerical study of the propagation of a discharge in a capillary tube in air at atmospheric pressure[J]. Journal of Physics D: Applied Physics, 44, 335201(2011).

    CLP Journals

    [1] Bide Zhang, Wanshun Li, Bingchuan Wang. Numerical study of atmospheric pressure He plasma jets with dual-channel inlet under different electrode structures[J]. High Power Laser and Particle Beams, 2022, 34(8): 085003

    Tools

    Get Citation

    Copy Citation Text

    Yuanyuan Jiang, Yanhui Wang, Caihui Gao, Dezhen Wang. Numerical study of atmospheric pressure Ar plasma jets under different electrode structures[J]. High Power Laser and Particle Beams, 2021, 33(6): 065011

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Plasma and Its Application Technology

    Received: Apr. 16, 2021

    Accepted: --

    Published Online: Jul. 22, 2021

    The Author Email:

    DOI:10.11884/HPLPB202133.210148

    Topics