Laser & Optoelectronics Progress, Volume. 62, Issue 14, 1428002(2025)

Visual-Inertial SLAM Algorithm with Fusion of Point-Line Features and Stepwise Marginalization

Xinyao Chai1, Li Li2,3, Rong Tang1,3, Dongxuan Han2, Zhangjun Peng2,3, and Zhigui Liu1,3、*
Author Affiliations
  • 1School of Information and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan , China
  • 2School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan , China
  • 3Sichuan Engineering Technology Research Center of Industrial Self-Supporting and Artificial Intelligence, Mianyang 621010, Sichuan , China
  • show less
    Figures & Tables(14)
    Frame diagram of the EPLD-VINS algorithm
    Comparison of the line features extraction effect between EPLD-VINS and PL-VINS
    Illustration of sliding window optimization of visual inertial information
    The ATE heatmaps of the MH_03_ medium sequence in 3D space
    The ATE heatmaps of the V1_02_ medium sequence in 3D space
    The ATE distribution plot of VINS-Mono, PL-VINS, and EPLD-VINS in MH_03_medium sequence
    The ATE distributionst of VINS-Mono, PL-VINS, and EPLD-VINS in V1_02_easy sequence
    The effects of line feature extraction and merging in different scenes
    • Table 1. Comparison of the absolute trajectory error

      View table

      Table 1. Comparison of the absolute trajectory error

      SequenceVINS-MonoPL-VINSEPLD-VINS
      SDmedianmeanSDmedianmeanSDmedianmean
      MH_01_easy0.05900.05760.06340.03790.08360.09620.02190.03780.0414
      MH_02_easy0.03970.03730.04440.02860.06630.07370.02780.07820.0787
      MH_03_medium0.04490.07070.08100.03050.04870.05520.02460.05240.0554
      MH_04_difficult0.10730.11390.11250.04650.09840.10360.03950.09410.0962
      MH_05_difficult0.10340.14070.14010.05840.11820.12310.03360.09730.0949
      V102_medium0.04200.07660.08510.01980.05150.05100.01820.02760.0382
      V202_medium0.10320.11490.13820.05140.07220.08150.03180.04840.0519
    • Table 2. Comparison of the relative pose error

      View table

      Table 2. Comparison of the relative pose error

      SequenceVINS-MonoPL-VINSEPLD-VINS
      SDmedianmeanSDmedianmeanSDmedianmean
      MH_01_easy0.02690.03280.03910.07540.08860.10530.07530.08830.1052
      MH_02_easy0.07900.09380.10980.01090.00280.00430.00270.00230.0035
      MH_03_medium0.12460.19260.20830.01790.00470.00760.00490.00430.0057
      MH_04_difficult0.13040.18190.21160.02980.00540.00890.00620.00470.0061
      MH_05_difficult0.12990.18740.21040.01950.00510.00840.00740.00490.0067
      V102_medium0.07190.12730.12960.06950.00400.00460.00190.00370.0038
      V202_medium0.06740.09460.10620.00640.00290.00390.00630.00280.0037
    • Table 3. The RMSE of ATE of different algorithms in this sequence

      View table

      Table 3. The RMSE of ATE of different algorithms in this sequence

      SequenceVINS-MonoVINS-Fusion21PL-VINSEPL-VINS21

      EPLD-VINS

      (w/o decompose)

      EPLD-VINS
      MH_01_easy0.07380.15820.11290.06750.05110.0468
      MH_02_easy0.05270.09420.08760.07100.09540.0919
      MH_03_medium0.09410.06070.06310.06340.06230.0606
      MH_04_difficult0.12340.14440.11060.14160.11670.1068
      MH_05_difficult0.15170.14300.13530.11200.11850.1004
      V102_medium0.08310.05130.05470.04660.04330.0354
      V202_medium0.17250.06570.09640.08050.07810.0608
    • Table 4. Comparison of running time of different algorithms

      View table

      Table 4. Comparison of running time of different algorithms

      ThreadModuleVINS-MonoVINS-FusionPL-VINSEPLD-VINS
      1Point detection and tracking12.4610.3912.7112.76
      2Line detection and tracking27.6522.19
      3Local VIO24.5820.5423.7529.02
      4Loop closure76.9179.9174.6874.40
    • Table 5. Comparison of ATE RMSE ablation on point and line feature modules

      View table

      Table 5. Comparison of ATE RMSE ablation on point and line feature modules

      SequencePL-VINSEPLD-VINS
      MH_01_easy0.05070.0407
      MH_02_easy0.09610.0688
      MH_03_medium0.05930.0465
      MH_04_difficult0.13470.1072
      MH_05_difficult0.08710.0850
      V101_easy0.04530.0404
      V102_medium0.03660.0303
      V103_difficult0.17660.1544
    • Table 6. Ablation comparison of the backend optimization module in terms of time on the EuRoc dataset

      View table

      Table 6. Ablation comparison of the backend optimization module in terms of time on the EuRoc dataset

      SequencePL-VINSEPLD-VINS
      MH_01_easy16533.178700.76
      MH_02_easy10642.576343.86
      MH_03_medium12259.108674.75
      MH_04_difficult6802.975231.64
      MH_05_difficult8606.016341.97
      V101_easy12726.899723.76
      V102_medium5698.643513.98
      V103_difficult5131.973123.76
    Tools

    Get Citation

    Copy Citation Text

    Xinyao Chai, Li Li, Rong Tang, Dongxuan Han, Zhangjun Peng, Zhigui Liu. Visual-Inertial SLAM Algorithm with Fusion of Point-Line Features and Stepwise Marginalization[J]. Laser & Optoelectronics Progress, 2025, 62(14): 1428002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Nov. 15, 2024

    Accepted: Feb. 4, 2025

    Published Online: Jul. 17, 2025

    The Author Email: Zhigui Liu (liuzhigui@swust.edu.cn)

    DOI:10.3788/LOP242268

    CSTR:32186.14.LOP242268

    Topics