Acta Optica Sinica, Volume. 44, Issue 5, 0522003(2024)
On-Chip Photonic Lead Direct Writing Technology Based on Nano-Alignment Guide Star
[1] Wang H Q, Wen J S, Yang Z Y et al. High-speed parallel two-photon laser direct writing lithography system[J]. Chinese Journal of Lasers, 49, 2202009(2022).
[2] Zhou G Z, He M F, Yang Z Y et al. Dual-beam laser direct writing nano-lithography system based on peripheral photoinhibition technology[J]. Chinese Journal of Lasers, 49, 0202001(2022).
[3] Liang Z X, Zhao Y Y, Duan X M. Principle and technology of laser super-diffraction lithography[J]. Laser & Optoelectronics Progress, 59, 0922029(2022).
[4] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).
[5] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser & Photonics Reviews, 7, 22-44(2013).
[6] Harinarayana V, Shin Y C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: a comprehensive review[J]. Optics & Laser Technology, 142, 107180(2021).
[7] Zhang Y L, Chen Q D, Xia H et al. Designable 3D nanofabrication by femtosecond laser direct writing[J]. Nano Today, 5, 435-448(2010).
[8] Lu X N. Research and prospect of laser lithography technology[J]. Scientific and Technological Innovation, 192-193(2018).
[9] Varapnickas S, Žukauskas A, Brasselet E, Baldacchini T et al. 3D microoptics via ultrafast laser writing: miniaturization, integration, and multifunctionalities[M]. Three dimensional microfabrication using two-photon polymerization, 445-474(2020).
[10] He M F, Zhang Z M, Cao C et al. 3D sub-diffraction printing by multicolor photoinhibition lithography: from optics to chemistry[J]. Laser & Photonics Reviews, 16, 2100229(2022).
[11] Zeng H, Wasylczyk P, Cerretti G et al. Alignment engineering in liquid crystalline elastomers: free-form microstructures with multiple functionalities[J]. Applied Physics Letters, 106, 111902(2015).
[12] Zheng J L, Chen G D, Wang L et al. Alignment method for rotary stage axis and optical axis in the polar coordinate direct laser writing system[J]. Optical Engineering, 61, 034104(2022).
[13] Dietrich P I, Blaicher M, Reuter I et al. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration[J]. Nature Photonics, 12, 241-247(2018).
[14] Lindenmann N, Balthasar G, Hillerkuss D et al. Photonic wire bonding: a novel concept for chip-scale interconnects[J]. Optics Express, 20, 17667-17677(2012).
[15] Billah M, Hoose T, Onanuga T et al. Multi-chip integration of lasers and silicon photonics by photonic wire bonding[C](2015).
[16] Lemma E D, Spagnolo B, de Vittorio M et al. Studying cell mechanobiology in 3D: the two-photon lithography approach[J]. Trends in Biotechnology, 37, 358-372(2019).
[17] Lölsberg J, Cinar A, Felder D et al. Two-photon vertical-flow lithography for microtube synthesis[J]. Small, 15, 1901356(2019).
[18] Lio G E, Ferraro A, Ritacco T et al. Leveraging on ENZ metamaterials to achieve 2D and 3D hyper-resolution in two-photon direct laser writing[J]. Advanced Materials, 33, 2008644(2021).
[19] Soukoulis C M, Wegener M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials[J]. Nature Photonics, 5, 523-530(2011).
[20] Si X C. Large range and high precision lithography alignment technologybased on composite gratings[D](2016).
[21] Fay B, Trotel J, Frichet A. Optical alignment system for submicron X-ray lithography[J]. Journal of Vacuum Science and Technology, 16, 1954-1958(1979).
[22] Opitz J, Laidler D W. Comparison of ATHENA and TTL alignment capability in product wafers[J]. Proceedings of SPIE, 852-862(2002).
[23] Kwon J H, Sohn Y J, Hwang H C et al. Chromatic aberration-free TTL alignment system for 193-nm step-and-scan exposure system by using phase conjugate waves[J]. Proceedings of SPIE, 971-977(1998).
[24] Ye X B, Zhou C G, Zhang Y et al. Lithography alignment technology based on two-dimensional zero reference grating by transmission-reflection[J]. Journal of University of Science and Technology of China, 37, 264-267(2007).
[25] Zhou C G, Ye X B, Zhang Y et al. A two-dimensional zero-reference grating-based high-precision planar positioning system[J]. Nanotechnology and Precision Engineering, 4, 190-194(2006).
[26] Zhang S Y. Research on automatic alignment technology in proximity contact lithography system[D](2021).
[27] He M F, Zhu D Z, Wang H Q et al. Advancements in micro-nano optical device based on two-photon direct writing[J]. Acta Optica Sinica, 43, 1623013(2023).
[28] Zhao Y, Lin L H, Sun H B. On-chip optical interconnection based on two-photon polymerization (invited)[J]. Acta Photonica Sinica, 51, 0851512(2022).
[29] Wang M, Qiao L L, Fang Z W et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 43, 1623014(2023).
[30] Yin Y X, Xu X R, Ding Y Z et al. Progress and challenge of 3D photonic integrated circuit (invited)[J]. Acta Photonica Sinica, 51, 0751416(2022).
[31] Wang M, Qiao L L, Fang Z W et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 43, 1623014(2023).
[32] Wang X, Liu Y J, Zhang Z M et al. Research progress in 2 μm waveband on-chip photonic integrated devices (invited)[J]. Infrared and Laser Engineering, 51, 20220087(2022).
Get Citation
Copy Citation Text
Bowen Sun, Guozun Zhou, Zhenyu Yang, Yinxu Bian, Cuifang Kuang, Xu Liu. On-Chip Photonic Lead Direct Writing Technology Based on Nano-Alignment Guide Star[J]. Acta Optica Sinica, 2024, 44(5): 0522003
Category: Optical Design and Fabrication
Received: Oct. 24, 2023
Accepted: Dec. 20, 2023
Published Online: Mar. 19, 2024
The Author Email: Bian Yinxu (byx@zju.edu.cn), Kuang Cuifang (cfkuang@zju.edu.cn)
CSTR:32393.14.AOS231694