Journal of Synthetic Crystals, Volume. 54, Issue 6, 935(2025)

Growth and Spectral Properties of Er∶CNGG Crystals by the Micro-Pulling-Down Method

Zihang CHEN, Xiaodan WANG*, Jian LIU, Peng LIU, Xiaodong XU*, and Jun XU
Author Affiliations
  • Key Laboratory of Intelligent Optoelectronic Devices and Chips of Jiangsu Higher Education Institutions, Advanced Technology Research Institute of Taihu Photon Center, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou215009, China
  • show less
    References(33)

    [1] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100-1128(2007).

    [2] NIE H K, SHI B N, XIA H P et al. High-repetition-rate kHz electro-optically Q-switched Ho, Pr∶YLF 2.9 µm bulk laser. Optics Express, 26, 33671-33677(2018).

    [3] MARTYSHKIN D, FEDOROV V, HAMLIN S J et al. 350 mJ electro-optically Q-switched 2.79 µm Cr∶Er∶YSGG MOPA. Optics Express, 31, 18525-18532(2023).

    [4] NIE H K, WANG F F, LIU J T et al. Rare-earth ions-doped mid-infrared (2.7-3 µm) bulk lasers: a review. Chinese Optics Letters, 19(2021).

    [5] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications. Journal of Luminescence, 169, 400-405(2016).

    [6] HU Q Q, NIE H K, MU W X et al. Bulk growth and an efficient mid-IR laser of high-quality Er∶YSGG crystals. CrystEngComm, 21, 1928-1933(2019).

    [7] NEWBURGH G A, DUBINSKII M. Power and efficiency scaling of Er∶ZBLAN fiber laser. Laser Physics Letters, 18(2021).

    [8] POLLACK S A, CHANG D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals. Optical and Quantum Electronics, 22, S75-S93(1990).

    [9] CHEN J K, SUN D L, LUO J Q et al. Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er, Pr∶GYSGG crystal. Optics Express, 21, 23425-23432(2013).

    [10] MA W W, SU L B, XU X D et al. Improved 2.79 μm continuous-wave laser performance from a diode-end pumped Er, Pr∶CaF2 crystal. Journal of Alloys and Compounds, 695, 3370-3375(2017).

    [11] WANG Y, YOU Z Y, LI J F et al. Spectroscopic investigations of highly doped Er3+∶GGG and Er3+/Pr3+∶GGG crystals. Journal of Physics D: Applied Physics, 42, 215406(2009).

    [12] LUPEI V, GEORGESCU S, FLOREA V. On the dynamics of population inversion for 3 μm Er3+ lasers. IEEE Journal of Quantum Electronics, 29, 426-434(1993).

    [13] YOU L, LU D Z, PAN Z B et al. High-efficiency 3 μm Er∶YGG crystal lasers. Optics Letters, 43, 5873-5876(2018).

    [14] QUAN C, SUN D L, ZHANG H L et al. 13-W and 1000-Hz of a 2.7-µm laser on the 968 nm LD side-pumped Er∶YAP crystal with concave end-faces. Optics Express, 29, 21655-21663(2021).

    [15] ZHANG M, YIN Y R, ZHANG L et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 µm. Applied Optics, 62, 1462-1466(2023).

    [16] HU L Z, SUN D L, LUO J Q et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal. Journal of Luminescence, 226, 117502(2020).

    [17] XUE Y Y, LI N, WANG D H et al. Spectroscopic and laser properties of Tm∶CNGG crystals grown by the micro-pulling-down method. Journal of Luminescence, 213, 36-39(2019).

    [18] YU H H, PAN Z B, ZHANG H J et al. Development of disordered laser crystals and their ultrafast lasers. Journal of Synthetic Crystals, 50, 648-668+583(2021).

    [19] SCHMIDT A, GRIEBNER U, ZHANG H J et al. Passive mode-locking of the Yb∶CNGG laser. Optics Communications, 283, 567-569(2010).

    [20] ZHANG Y G, PETROV V, GRIEBNER U et al. Diode-pumped SESAM mode-locked Yb∶CLNGG laser. Optics & Laser Technology, 69, 144-147(2015).

    [21] XIE G Q, QIAN L J, YUAN P et al. Generation of 534 fs pulses from a passively mode-locked Nd∶CLNGG-CNGG disordered crystal hybrid laser. Laser Physics Letters, 7, 483-486(2010).

    [22] MA J, PAN Z B, WANG J et al. Generation of sub-50 fs soliton pulses from a mode-locked Yb, Na∶CNGG disordered crystal laser. Optics Express, 25, 14968(2017).

    [23] WANG Y C, ZHAO Y G, PAN Z B et al. 78 fs SWCNT-SA mode-locked Tm∶CLNGG disordered garnet crystal laser at 2017 nm. Optics Letters, 43, 4268-4271(2018).

    [24] PAN Z B, WANG Y C, ZHAO Y G et al. Generation of 84-fs pulses from a mode-locked Tm∶CNNGG disordered garnet crystal laser. Photonics Research, 6, 800(2018).

    [25] PAN Z B, LOIKO P, WANG Y C et al. Disordered Tm3+, Ho3+-codoped CNGG garnet crystal: towards efficient laser materials for ultrashort pulse generation at ∼2 μm. Journal of Alloys and Compounds, 853, 157100(2021).

    [26] TANG K Y, YINGMING S, GAI J G et al. Evaluation of growth, thermal, and spectroscopic properties of Er3+-doped CLNGG crystals for use in 2.7 μm laser. Crystals, 11, 126(2021).

    [27] SOJKA L, PAJEWSKI L, LAMRINI S et al. Experimental investigation of actively Q-switched Er3+∶ZBLAN fiber laser operating at around 2.8 µm. Sensors, 20, 4642(2020).

    [28] UEHARA H, TOKITA S, KAWANAKA J et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics. Optics Express, 26, 3497-3507(2018).

    [29] GUO J, LIU J, WANG Z B et al. Growth, spectroscopic properties and laser performance of Nd∶ASL single crystal fibers. Journal of Synthetic Crystals, 53, 1877-1883(2024).

    [30] GU P, WANG P G, GUAN W M et al. Research progress on growth techniques of single crystal fiber. Journal of Synthetic Crystals, 50, 2362-2378(2021).

    [31] DÉLEN X, PIEHLER S, DIDIERJEAN J et al. 250 W single-crystal fiber Yb∶YAG laser. Optics Letters, 37, 2898-2900(2012).

    [32] KAMINSKII A A, BELOKONEVA E L, BUTASHIN A V et al. Crystal structure and spectral luminescence properties of the cation-deficient garnet Ca3(Nb,Ga)2Ga3O12-Nd3+. Inorganic Materials, 22, 927-936(1986).

    [33] ZHAO X Y, SUN D L, LUO J Q et al. Spectroscopic and laser properties of Er∶LuSGG crystal for high-power ∼2.8 µm mid-infrared laser. Optics Express, 28, 8843-8852(2020).

    Tools

    Get Citation

    Copy Citation Text

    Zihang CHEN, Xiaodan WANG, Jian LIU, Peng LIU, Xiaodong XU, Jun XU. Growth and Spectral Properties of Er∶CNGG Crystals by the Micro-Pulling-Down Method[J]. Journal of Synthetic Crystals, 2025, 54(6): 935

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 4, 2025

    Accepted: --

    Published Online: Jul. 8, 2025

    The Author Email: Xiaodan WANG (xiaodanwang@mail.usts.edu.cn), Xiaodong XU (xdxu79@jsnu.edu.cn)

    DOI:10.16553/j.cnki.issn1000-985x.2025.0022

    Topics