Journal of Synthetic Crystals, Volume. 54, Issue 6, 935(2025)
Growth and Spectral Properties of Er∶CNGG Crystals by the Micro-Pulling-Down Method
[1] GODARD A. Infrared (2-12 μm) solid-state laser sources: a review. Comptes Rendus Physique, 8, 1100-1128(2007).
[2] NIE H K, SHI B N, XIA H P et al. High-repetition-rate kHz electro-optically Q-switched Ho, Pr∶YLF 2.9 µm bulk laser. Optics Express, 26, 33671-33677(2018).
[3] MARTYSHKIN D, FEDOROV V, HAMLIN S J et al. 350 mJ electro-optically Q-switched 2.79 µm Cr∶Er∶YSGG MOPA. Optics Express, 31, 18525-18532(2023).
[4] NIE H K, WANG F F, LIU J T et al. Rare-earth ions-doped mid-infrared (2.7-3 µm) bulk lasers: a review. Chinese Optics Letters, 19(2021).
[5] WALSH B M, LEE H R, BARNES N P. Mid infrared lasers for remote sensing applications. Journal of Luminescence, 169, 400-405(2016).
[6] HU Q Q, NIE H K, MU W X et al. Bulk growth and an efficient mid-IR laser of high-quality Er∶YSGG crystals. CrystEngComm, 21, 1928-1933(2019).
[7] NEWBURGH G A, DUBINSKII M. Power and efficiency scaling of Er∶ZBLAN fiber laser. Laser Physics Letters, 18(2021).
[8] POLLACK S A, CHANG D B. Upconversion-pumped population kinetics for 4I13/2 and 4I11/2 laser states of Er3+ ion in several host crystals. Optical and Quantum Electronics, 22, S75-S93(1990).
[9] CHEN J K, SUN D L, LUO J Q et al. Spectroscopic properties and diode end-pumped 2.79 μm laser performance of Er, Pr∶GYSGG crystal. Optics Express, 21, 23425-23432(2013).
[10] MA W W, SU L B, XU X D et al. Improved 2.79 μm continuous-wave laser performance from a diode-end pumped Er, Pr∶CaF2 crystal. Journal of Alloys and Compounds, 695, 3370-3375(2017).
[11] WANG Y, YOU Z Y, LI J F et al. Spectroscopic investigations of highly doped Er3+∶GGG and Er3+/Pr3+∶GGG crystals. Journal of Physics D: Applied Physics, 42, 215406(2009).
[12] LUPEI V, GEORGESCU S, FLOREA V. On the dynamics of population inversion for 3 μm Er3+ lasers. IEEE Journal of Quantum Electronics, 29, 426-434(1993).
[13] YOU L, LU D Z, PAN Z B et al. High-efficiency 3 μm Er∶YGG crystal lasers. Optics Letters, 43, 5873-5876(2018).
[14] QUAN C, SUN D L, ZHANG H L et al. 13-W and 1000-Hz of a 2.7-µm laser on the 968 nm LD side-pumped Er∶YAP crystal with concave end-faces. Optics Express, 29, 21655-21663(2021).
[15] ZHANG M, YIN Y R, ZHANG L et al. Self-Q-switched Er∶Lu2O3 laser at 2.74 µm. Applied Optics, 62, 1462-1466(2023).
[16] HU L Z, SUN D L, LUO J Q et al. Effect of Er3+ concentration on spectral characteristic and 2.79 μm laser performance of Er∶YSGG crystal. Journal of Luminescence, 226, 117502(2020).
[17] XUE Y Y, LI N, WANG D H et al. Spectroscopic and laser properties of Tm∶CNGG crystals grown by the micro-pulling-down method. Journal of Luminescence, 213, 36-39(2019).
[18] YU H H, PAN Z B, ZHANG H J et al. Development of disordered laser crystals and their ultrafast lasers. Journal of Synthetic Crystals, 50, 648-668+583(2021).
[19] SCHMIDT A, GRIEBNER U, ZHANG H J et al. Passive mode-locking of the Yb∶CNGG laser. Optics Communications, 283, 567-569(2010).
[20] ZHANG Y G, PETROV V, GRIEBNER U et al. Diode-pumped SESAM mode-locked Yb∶CLNGG laser. Optics & Laser Technology, 69, 144-147(2015).
[21] XIE G Q, QIAN L J, YUAN P et al. Generation of 534 fs pulses from a passively mode-locked Nd∶CLNGG-CNGG disordered crystal hybrid laser. Laser Physics Letters, 7, 483-486(2010).
[22] MA J, PAN Z B, WANG J et al. Generation of sub-50 fs soliton pulses from a mode-locked Yb, Na∶CNGG disordered crystal laser. Optics Express, 25, 14968(2017).
[23] WANG Y C, ZHAO Y G, PAN Z B et al. 78 fs SWCNT-SA mode-locked Tm∶CLNGG disordered garnet crystal laser at 2017 nm. Optics Letters, 43, 4268-4271(2018).
[24] PAN Z B, WANG Y C, ZHAO Y G et al. Generation of 84-fs pulses from a mode-locked Tm∶CNNGG disordered garnet crystal laser. Photonics Research, 6, 800(2018).
[25] PAN Z B, LOIKO P, WANG Y C et al. Disordered Tm3+, Ho3+-codoped CNGG garnet crystal: towards efficient laser materials for ultrashort pulse generation at ∼2 μm. Journal of Alloys and Compounds, 853, 157100(2021).
[26] TANG K Y, YINGMING S, GAI J G et al. Evaluation of growth, thermal, and spectroscopic properties of Er3+-doped CLNGG crystals for use in 2.7 μm laser. Crystals, 11, 126(2021).
[27] SOJKA L, PAJEWSKI L, LAMRINI S et al. Experimental investigation of actively Q-switched Er3+∶ZBLAN fiber laser operating at around 2.8 µm. Sensors, 20, 4642(2020).
[28] UEHARA H, TOKITA S, KAWANAKA J et al. Optimization of laser emission at 2.8 μm by Er∶Lu2O3 ceramics. Optics Express, 26, 3497-3507(2018).
[29] GUO J, LIU J, WANG Z B et al. Growth, spectroscopic properties and laser performance of Nd∶ASL single crystal fibers. Journal of Synthetic Crystals, 53, 1877-1883(2024).
[30] GU P, WANG P G, GUAN W M et al. Research progress on growth techniques of single crystal fiber. Journal of Synthetic Crystals, 50, 2362-2378(2021).
[31] DÉLEN X, PIEHLER S, DIDIERJEAN J et al. 250 W single-crystal fiber Yb∶YAG laser. Optics Letters, 37, 2898-2900(2012).
[32] KAMINSKII A A, BELOKONEVA E L, BUTASHIN A V et al. Crystal structure and spectral luminescence properties of the cation-deficient garnet Ca3(Nb,Ga)2Ga3O12-Nd3+. Inorganic Materials, 22, 927-936(1986).
[33] ZHAO X Y, SUN D L, LUO J Q et al. Spectroscopic and laser properties of Er∶LuSGG crystal for high-power ∼2.8 µm mid-infrared laser. Optics Express, 28, 8843-8852(2020).
Get Citation
Copy Citation Text
Zihang CHEN, Xiaodan WANG, Jian LIU, Peng LIU, Xiaodong XU, Jun XU. Growth and Spectral Properties of Er∶CNGG Crystals by the Micro-Pulling-Down Method[J]. Journal of Synthetic Crystals, 2025, 54(6): 935
Category:
Received: Feb. 4, 2025
Accepted: --
Published Online: Jul. 8, 2025
The Author Email: Xiaodan WANG (xiaodanwang@mail.usts.edu.cn), Xiaodong XU (xdxu79@jsnu.edu.cn)