Optics and Precision Engineering, Volume. 30, Issue 15, 1815(2022)
Research progress on complete fabrication technology of diffractive optical elements
[1] [1] 1金国藩,二元光学[M]. 北京: 国防工业出版社, 1998. doi: 10.12173/j.issn.1004-5511.202111004JING F. Binary Optics[M]. Beijing: National Defense Industry Press, 1998.(in Chinese). doi: 10.12173/j.issn.1004-5511.202111004
[2] LOHMANN A W. A pre-history of computer-generated holography[J]. Optics and Photonics News, 19, 36-47(2008).
[3] REINHARD V. Diffractive optics[J]. Advanced Optical Technologies, 10, 17-18(2021).
[4] LEGER J, HOLZ M, SWANSON G. Coherent laser beam addition- An application of binary-optics technology[report](1988).
[5] [5] 5刘帅, 刘春雨,王天聪. 星载空间目标监视折衍射光学成像系统设计[J].光学精密工程, 2017, 25(12z): 24-31. doi: 10.1117/12.2285166LIUSH, LIUCH Y, WANGT C. Refractive-diffractive optical imaging system for satellite-borne surveillance of space targets [J]. Optics and Precision Engineering, 2017,25(12z): 24-31. (in Chinese). doi: 10.1117/12.2285166
[6] [6] 6张健, 栗孟娟, 阴刚华, 等. 用于太空望远镜的大口径薄膜菲涅尔衍射元件[J]. 光学 精密工程, 2016, 24(6): 1289-1296. doi: 10.3788/ope.20162406.1289ZHANGJ, LIM J, YING H, et al. Large-diameter membrane Fresnel diffraction elements for space telescope[J]. Optics and Precision Engineering, 2016, 24(6): 1289-1296.(in Chinese). doi: 10.3788/ope.20162406.1289
[7] [7] 7陈宜方. X射线衍射光学部件的制备及其光学性能表征[J]. 光学 精密工程, 2017, 25(11): 2779-2795. doi: 10.3788/ope.20172511.2779CHENY F. Fabrication of diffractive X-ray optics and their performance characterization[J]. Optics and Precision Engineering, 2017, 25(11): 2779-2795.(in Chinese). doi: 10.3788/ope.20172511.2779
[8] ZHANG F, ZHU J, YUE W R et al. An approach to increase efficiency of DOE based pupil shaping technique for off-axis illumination in optical lithography[J]. Optics Express, 23, 4482-4493(2015).
[9] LEONARD J, CARRIERE J, STACK J et al. An improved process for manufacturing diffractive optical elements (DOEs) for off-axis illumination systems[J]. SPIE, 6924(2008).
[10] GROSSINGER I, KEDMI J. Diffractive optical element for extreme ultraviolet wavefront control[P].
[11] WAIBLINGER M, KORNILOV K, HOFMANN T et al. E-beam induced EUV photomask repair: a perfect match[C], 7545(2010).
[12] [12] 12周常河. 微纳光学结构及应用[J]. 激光与光电子学进展, 2009, 46(10): 22-27. doi: 10.3788/lop20094610.0022ZHOUCH H. Micro- & nano- optical structures and applications[J]. Laser & Optoelectronics Progress, 2009, 46(10): 22-27.(in Chinese). doi: 10.3788/lop20094610.0022
[13] VAN SCHOOT J, VAN SETTEN E, TROOST K et al. High-NA EUV lithography exposure tool: program progress[C], 11323, 1132307(2020).
[15] VELDKAMP W B. Binary optics and beyond: where do we go from here?[J]. Japanese Journal of Applied Physics, 45, 6550-6554(2006).
[16] MANFRINATO V R, ZHANG L H, SU D et al. Resolution limits of electron-beam lithography toward the atomic scale[J]. Nano Letters, 13, 1555-1558(2013).
[17] CHAO W L, KIM J, REKAWA S et al. Demonstration of 12 nm resolution Fresnel zone plate lens based soft X-ray microscopy[J]. Optics Express, 17, 17669-17677(2009).
[18] KAZANSKIY N L, SKIDANOV R V. Technological line for creation and research of diffractive optical elements[C], 11146, 11460W(2019).
[19] CHANG C, SAKDINAWAT A. Ultra-high aspect ratio high-resolution nanofabrication for hard X-ray diffractive optics[J]. Nature Communications, 5, 4243(2014).
[20] AKAN R, FRISK T, LUNDBERG F et al. Metal-assisted chemical etching and electroless deposition for fabrication of hard X-ray Pd/Si zone plates[J]. Micromachines, 11, 301(2020).
[21] ZHU J Y, CHEN Y F, XIE S S et al. Nanofabrication of 30 nm Au zone plates by e-beam lithography and pulse voltage electroplating for soft X-ray imaging[J]. Microelectronic Engineering, 225, 111254(2020).
[22] LI Z Q, CHEN Y Q, ZHU X P et al. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching[J]. Nanotechnology, 27, 365302(2016).
[23] LIU Q, ZHAO J, GUO J L et al. Sub-5 nm lithography with single GeV heavy ions using inorganic resist[J]. Nano Letters, 21, 2390-2396(2021).
[24] [24] 24刘容. 中国科学院微电子中心开发出0.8微米集成电路[J]. 高技术通讯, 1995, 5(8): 62, 54. doi: 10.3321/j.issn:1002-0470.1995.08.021LIUR. The microelectronics centre of CAS developed the technique of fabricating of 0.8 μm integration circuits[J]. High Technology Letters, 1995, 5(8): 62, 54.(in Chinese). doi: 10.3321/j.issn:1002-0470.1995.08.021
[25] [25] 25谢常青, 叶甜春, 孙宝银, 等. 0.5μm分辨率同步辐射X射线光刻技术[J]. 微细加工技术, 1999(3): 32-34, 5.XIECH Q, YET CH, SUNB Y, et al. Synchrotron radiation X ray lithography technique for 0.5μm resolution[J]. Microfabrication Technology, 1999(3): 32-34, 5.(in Chinese)
[26] [26] 26谢常青, 朱效立, 牛洁斌, 等. 微纳金属光学结构制备技术及应用[J]. 光学学报, 2011, 31(9): 0900128. doi: 10.3788/aos201131.0900128XIECH Q, ZHUX L, NIUJ B, et al. Micro-and nano-metal structures fabrication technology and applications[J]. Acta Optica Sinica, 2011, 31(9): 0900128.(in Chinese). doi: 10.3788/aos201131.0900128
[27] XIE C Q, ZHU X L, LI H L et al. Hybrid lithography for X-ray diffractive optical elements[J]. SPIE Newsroom, 1075(2014).
[28] DI FABRIZIO E, CABRINI S, COJOC D et al. Shaping X-rays by diffractive coded nano-optics[J]. Microelectronic Engineering, 67/68, 87-95(2003).
[29] SHE A L, ZHANG S Y, SHIAN S et al. Large area metalenses: design, characterization, and mass manufacturing[J]. Optics Express, 26, 1573-1585(2018).
[30] LI H L, YE T C, SHI L N et al. Fabrication of ultra-high aspect ratio (>160∶1) silicon nanostructures by using Au metal assisted chemical etching[J]. Journal of Micromechanics and Microengineering, 27, 124002(2017).
[31] LI H L, XIE C Q. Fabrication of ultra-high aspect ratio (>420∶1) Al2O3 nanotube arraysby sidewall TransferMetal assistant chemical etching[J]. Micromachines, 11, 378(2020).
[32] [32] 32杜宇禅, 李海亮, 史丽娜, 等. 32nm节点极紫外光刻掩模的集成研制[J]. 光学学报, 2013, 33(10): 327-333. doi: 10.3788/aos201333.1034002DUY CH, LIH L, SHIL N, et al. Integrated development of extreme ultraviolet lithography mask at 32nm node[J]. Acta Optica Sinica, 2013, 33(10): 327-333.(in Chinese). doi: 10.3788/aos201333.1034002
[33] LOUIS E, YAKSHIN AE, GÖRTS P C et al. Progress in Mo/Si multilayer coating technology for EUVL optics[J]. SPIE, 3997, 406-411(2000).
[34] LIU Y, XIE C Q. Large-area SiC membrane produced by plasma enhanced chemical vapor deposition at relatively high temperature[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(2015).
[35] XIE C Q, ZHU X L, LI H L et al. Fabrication of X-ray diffractive optical elements for laser fusion applications[J]. Optical Engineering, 52(2013).
[36] WANG E L, NIU J B, LIANG Y H et al. Complete control of multichannel, angle‐multiplexed, and arbitrary spatially varying polarization fields[J]. Advanced Optical Materials, 8, 1901674(2020).
[37] QU F R, WANG G Y et al. A MEMS thermal shear stress sensor produced by a combination of substrate-free structures with anodic bonding technology[J]. Applied Physics Letters, 109(2016).
Get Citation
Copy Citation Text
Changqing XIE. Research progress on complete fabrication technology of diffractive optical elements[J]. Optics and Precision Engineering, 2022, 30(15): 1815
Category: Design,Fabrication and Application of Planar Optical Elements
Received: Feb. 25, 2022
Accepted: --
Published Online: Sep. 7, 2022
The Author Email: Changqing XIE (xiechangqing@ime.ac.cn)