Optics and Precision Engineering, Volume. 33, Issue 7, 1065(2025)
Review of MEMS vibration-mirror-based 3D reconstruction of structured light
[1] ZHAO Y, YU H T, BAI L F et al. Accurate fringe projection profilometry using instable projection light source[J]. Optics Communications, 507, 127643(2022).
[2] ZUO C, FENG S J, HUANG L et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 109, 23-59(2018).
[3] MIAO Y, YANG Y, HOU Q et al. High-efficiency 3D reconstruction with a uniaxial MEMS-based fringe projection profilometry[J]. Opt Express, 29, 34243-34257(2021).
[4] ZHAO J, ZHOU Y, ZHAO J W et al. Precision position measurement of PMSLM based on ApFFT and temporal sinusoidal fringe pattern phase retrieval[J]. IEEE Transactions on Industrial Informatics, 16, 7591-7601(2020).
[5] RAO G, YANG X D, YU H B et al. Fringe-projection-based normal direction measurement and adjustment for robotic drilling[J]. IEEE Transactions on Industrial Electronics, 67, 9560-9570(2020).
[6] ZHANG S. Absolute phase retrieval methods for digital fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 107, 28-37(2018).
[7] ZUO CH, ZHANG X L, HU Y et al. Has 3D finally come of age?: an introduction to 3D structured-light sensor[J]. Infrared and Laser Engineering, 49, 9-53(2020).
左超, 张晓磊, 胡岩. 3D真的来了吗?: 三维结构光传感器漫谈[J]. 红外与激光工程, 49, 9-53(2020).
[8] MA R J, LI C, XING Y B et al. Defect focused Harris3D & boundary fine-tuning optimized region growing: Lithium battery pole piece defect segmentation[J]. Measurement, 242, 116147(2025).
[9] LI J X, ZHOU Q, LI X H et al. An improved low-noise processing methodology combined with PCL for industry inspection based on laser line scanner[J]. Sensors, 19, 3398(2019).
[10] ZHOU Q, QIAO X R, NI K et al. Depth detection in interactive projection system based on one-shot black-and-white stripe pattern[J]. Optics Express, 25, 5341(2017).
[11] 陈彦军, 左旺孟, 王宽全. 结构光编码方法综述[J]. 小型微型计算机系统, 31, 1856-1863(2010).
CHEN Y J, ZUO W M, WANG K Q et al. Survey on structured light pattern codification methods[J]. Journal of Chinese Computer Systems, 31, 1856-1863(2010).
[12] SALVI J, PAGÈS J, BATLLE J. Pattern codification strategies in structured light systems[J]. Pattern Recognition, 37, 827-849(2004).
[13] NGUYEN T N, HUYNH H H, MEUNIER J. 3D reconstruction with time-of-flight depth camera and multiple mirrors[J]. IEEE Access, 6, 38106-38114(2018).
[14] ZHENG T X, HUANG SH, LI Y F et al. Key techniques for vision based 3D reconstruction: a review[J]. Acta Automatica Sinica, 46, 631-652(2020).
郑太雄, 黄帅, 李永福. 基于视觉的三维重建关键技术研究综述[J]. 自动化学报, 46, 631-652(2020).
[15] CHEN R M, LI Y M, XUE G P et al. Laser triangulation measurement system with Scheimpflug calibration based on the Monte Carlo optimization strategy[J]. Optics Express, 30, 25290-25307(2022).
[16] YU R M, YU H S, LIANG X Q et al. Phase-domain modulated hybrid phase-shifting structured light based efficient 3D measurement[J]. Optics and Lasers in Engineering, 172, 107875(2024).
[17] KIM J, LEE J, PARK Y H. Highly accurate three-dimensional measurement of large structures using multiple stereo vision with improved two-step calibration algorithm[J]. Measurement, 234, 114886(2024).
[18] ZHOU W B, JIA Y F, FAN L Y et al. A MEMS-based real-time structured light 3-D measuring architecture on FPGA[J]. Journal of Real-Time Image Processing, 21, 98(2024).
[19] HAN M, JIANG H, LEI F X et al. Modeling window smoothing effect hidden in fringe projection profilometry[J]. Measurement, 242, 115852(2025).
[20] HAN M, XING Y B, WANG X H et al. Projection superimposition for the generation of high-resolution digital grating[J]. Optics Letters, 49, 4473-4476(2024).
[21] HAN M, SHI W J, LU S H et al. Internal–external layered phase shifting for phase retrieval[J]. IEEE Transactions on Instrumentation and Measurement, 73, 1-13(2024).
[22] HAN M, LEI F X, SHI W J et al. Uniaxial MEMS-based 3D reconstruction using pixel refinement[J]. Optics Express, 31, 536-554(2023).
[23] HAN M, LEI F X, TAO Y H et al. A novel calibration method for a uniaxial MEMS-based 3D reconstruction system[C], 5, 2022(2023).
[24] LEI F X, HAN M, JIANG H et al. A phase-angle inspired calibration strategy based on MEMS projector for 3D reconstruction with markedly reduced calibration images and parameters[J]. Optics and Lasers in Engineering, 176, 108078(2024).
[25] CHEN M F, LI Y M, LI X H et al. An end-to-end structured light depth prediction approach using Mamba networks[C], 12, 25(2024).
[26] LI Y M, LI Z, ZHANG C B et al. Deep learning-driven one-shot dual-view 3-D reconstruction for dual-projector system[J]. IEEE Transactions on Instrumentation and Measurement, 73, 1-14(2024).
[27] CHEN M F, LI Y M, LI X H et al. Single-frame structured light depth map reconstruction with absolute phase-aided supervision[C], 12, 24(2024).
[28] LI Y M, LI Z N, CHEN W K et al. MSAN: mask semantic attention network for single-frame structured light 3D reconstruction[C], 12, 9(2024).
[29] LI Z N, LI Y M, CHEN W K et al. DSAS-S2APNet: a dual-stage auxiliary supervision network for single-frame to absolute phase prediction[C], 12, 36(2024).
[30] YIN Y K, ZHANG Z H, LIU X L et al. Review of the system model and calibration for fringe projection profilometry[J]. Infrared and Laser Engineering, 49, 127-144(2020).
殷永凯, 张宗华, 刘晓利. 条纹投影轮廓术系统模型与标定综述[J]. 红外与激光工程, 49, 127-144(2020).
[31] LEI F X, MA R J, LI X H. Use of phase-angle model for full-field 3D reconstruction under efficient local calibration[J]. Sensors, 24, 2581(2024).
[32] ZHANG Z H, LI Y L, GAO F et al. Phase unwrapping technology for structured light three-dimensional measurement: a review(invited)[J]. Infrared and Laser Engineering, 52, 23-45(2023).
张宗华, 李雁玲, 高峰. 面向结构光三维测量的相位展开技术综述(特邀)[J]. 红外与激光工程, 52, 23-45(2023).
[33] BAI Y J, ZHANG Z H, FU S et al. Recent progress of full-field three-dimensional shape measurement based on phase information[J]. Nanomanufacturing and Metrology, 7, 9(2024).
[34] 李乐阳, 吴周杰, 张启灿. 基于相移条纹分析的相位误差补偿技术发展综述(特邀)[J]. 激光与光电子学进展, 61(2024).
LI Y Y, WU Z J, ZHANG Q C. Phase error compensation technique based on phase-shifting fringe analysis: a review(invited)[J]. Laser & Optoelectronics Progress, 61(2024).
[35] 李勇, 张广汇, 马利红. 条纹投影动态三维表面成像技术综述[J]. 红外与激光工程, 49, 91-103(2020).
LI Y, ZHANG G H, MA L H et al. Review of dynamic three-dimensional surface imaging based on fringe projection[J]. Infrared and Laser Engineering, 49, 91-103(2020).
[36] MAO C L, LU R SH, DONG J T et al. Overview of the 3D profilometry of phase shifting fringe projection[J]. Acta Metrologica Sinica, 39, 628-640(2018).
毛翠丽, 卢荣胜, 董敬涛. 相移条纹投影三维形貌测量技术综述[J]. 计量学报, 39, 628-640(2018).
[37] LIU H Y, YAN N, SHAO B F et al. Deep learning in fringe projection: a review[J]. Neurocomputing, 581, 127493(2024).
[38] ZHU X J, ZHAO H M, SONG L M et al. Triple-output phase unwrapping network with a physical prior in fringe projection profilometry[J]. Applied Optics, 62, 7910(2023).
[39] LI Y X, QIAN J M, FENG S J et al. Single-shot spatial frequency multiplex fringe pattern for phase unwrapping using deep learning[C], 19, 71(2020).
[40] LI Y X, QIAN J M, FENG S J et al. End-to-end single-shot composite fringe projection profilometry based on deep learning[C], 14, 105(2021).
[41] LI W J, YU J, GAI S Y et al. Absolute phase retrieval for a single-shot fringe projection profilometry based on deep learning[J]. Optical Engineering, 60(2021).
[42] NGUYEN H, LY K L, TRAN T et al. hNet: Single-shot 3D shape reconstruction using structured light and h-shaped global guidance network[J]. Results in Optics, 4, 100104(2021).
[43] WANG C, ZHOU P, ZHU J P. Deep learning-based end-to-end 3D depth recovery from a single-frame fringe pattern with the MSUNet++ network[J]. Optics Express, 31, 33287-33298(2023).
[44] WANG L L, XUE W K, WANG C Y et al. Depth estimation from a single-shot fringe pattern based on DD-Inceptionv2-UNet[J]. Applied Optics, 62, 9144-9155(2023).
[45] CAI Y, GUO M Y, WANG C Y et al. TTFDNet: precise depth estimation from single-frame fringe patterns[J]. Sensors, 24, 4733(2024).
[46] ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N et al. UNet++: redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE Transactions on Medical Imaging, 39, 1856-1867(2020).
[47] ZHU X J, HAN Z Q, ZHANG Z Z et al. PCTNet: depth estimation from single structured light image with a parallel CNN-transformer network[J]. Measurement Science and Technology, 34(2023).
[48] WANG L, LU D Q, TAO J Q et al. Single-shot structured light projection profilometry with SwinConvUNet[J]. Optical Engineering, 61, 114101(2022).
[49] NGUYEN A H, LY K L, LAM V K et al. Generalized fringe-to-phase framework for single-shot 3D reconstruction integrating structured light with deep learning[J]. Sensors, 23, 4209(2023).
[50] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000).
[51] HU X W, WANG G J, ZHANG Y J et al. Large depth-of-field 3D shape measurement using an electrically tunable lens[J]. Optics Express, 27, 29697-29709(2019).
[52] HU G L, ZHOU X, ZHANG G L et al. Multiple laser stripe scanning profilometry based on microelectromechanical systems scanning mirror projection[J]. Micromachines, 10, 57(2019).
[53] HUANG H M, LIU G H, DUAN K R et al. 3D reconstruction of structured light based on infrared MEMS[J]. Journal of Laser Applications, 33(2021).
[54] ZHANG G L, ZHOU X, JIN R et al. A high-speed full-field profilometry with coded laser strips projection[C](2017).
[55] YANG T, ZHANG G L, LI H H et al. Hybrid 3D shape measurement using the MEMS scanning micromirror[J]. Micromachines, 10, 47(2019).
[56] MA Z Q, LU Z S, LI Y L et al. Multi-frequency fringe projection profilometry: phase error suppression based on cycle count adjustment[J]. Applied Sciences, 13, 5117(2023).
[57] LIU Y C, WANG H, LONG Y J et al. Low restriction 3D reconstruction based on uniaxial MEMS fringe projection profilometry[C], 15, 152-157(2022).
[58] YANG Y, MIAO Y P, CAI Z W et al. A novel projector ray-model for 3D measurement in fringe projection profilometry[J]. Optics and Lasers in Engineering, 149, 106818(2022).
[59] YANG T, GU F F. Overview of modulation techniques for spatially structured-light 3D imaging[J]. Optics Laser Technology, 169, 110037(2024).
[60] 张力伟, 陈浩博, 孙文卿. 移相干涉测量中的抗振技术综述[J]. 激光与光电子学进展, 60, 1900005(2023).
ZHANGL W, CHENH B, SUNW Q et al. Review of anti-vibration technology in phase-shifting interferometry[J]. Laser & Optoelectronics Progress, 60, 1900005(2023).
[61] ZHANG Q C, SU X Y. Research progress of dynamic three-dimensional shape measurement[J]. Laser & Optoelectronics Progress, 50, 10001(2013).
张启灿, 苏显渝. 动态三维面形测量的研究进展[J]. 激光与光电子学进展, 50, 10001(2013).
[62] ZHANG Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering, 50, 1097-1106(2012).
[63] WU ZH J, ZHANG Q C. High-speed 3D topography measurement based on fringe projection: a review[J]. Laser & Optoelectronics Progress, 60(2023).
吴周杰, 张启灿. 基于条纹投影的高速三维形貌测量技术发展综述[J]. 激光与光电子学进展, 60(2023).
[64] LI X R, GUO W B, ZHANG Q C et al. Three-dimensional shape measurement by arbitrary-bit fringe projection using DLP projector[J]. Acta Optica Sinica, 43(2023).
李训仁, 郭文博, 张启灿. DLP投影任意比特数条纹实现三维面形测量[J]. 光学学报, 43(2023).
[65] SU X Y, ZHOU W S, VON BALLY G et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 94, 561-573(1992).
[66] LEI S Y, ZHANG S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 34, 3080-3082(2009).
[67] AYUBI G A, AYUBI J A, DI MARTINO J M et al. Pulse-width modulation in defocused three-dimensional fringe projection[J]. Optics Letters, 35, 3682-3684(2010).
[68] EKSTRAND L, ZHANG S. Three-dimensional profilometry with nearly focused binary phase-shifting algorithms[J]. Optics Letters, 36, 4518-4520(2011).
[69] WANG Y J, ZHANG S. Three-dimensional shape measurement with binary dithered patterns[J]. Applied Optics, 51, 6631-6636(2012).
[70] WANG Y J, ZHANG S. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing[J]. Optics Letters, 35, 4121-4123(2010).
[71] LI B W, ZHANG S. Microscopic structured light 3D profilometry: binary defocusing technique
[72] 高鹏, 李勇, 涂颜帅. 离焦条纹投影三维测量中正弦光栅的二值化方法研究[J]. 光子学报, 43, 512006(2014).
GAO P, LI Y, TU Y S et al. Binarization methods of sinusoidal grating in 3D measurement base on defocused fringe projection[J]. Acta Photonica Sinica, 43, 512006(2014).
[73] WAKAYAMA T. Compact camera for three-dimensional profilometry incorporating a single MEMS mirror[J]. Optical Engineering, 51(2012).
[74] XIA C F, QIAO D Y, SONG X D et al. A time division capacitive feedback method of electrostatic MEMS mirror driven by PWM signal[J]. Sensors and Actuators A: Physical, 322, 112631(2021).
[75] XUE J P, ZHANG Q C, LI C H et al. 3D face profilometry based on galvanometer scanner with infrared fringe projection in high speed[J]. Applied Sciences, 9, 1458(2019).
[76] YANG D, QIAO D Y, XIA C F et al. Adaptive horizontal scaling method for speckle-assisted fringe projection profilometry[J]. Optics Express, 31, 328-343(2023).
[77] GUO X M, YIN W, ZUO C et al. Fast and high-precision 3D face scanning system based on infrared fringe projection[C](2021).
[78] SHI W J, LU S H, TAO Y H et al. FPGA-enabled accurate angle-power matching method in MEMS mirrors-based structure light projection system[C], 5, 7(2022).
[79] YANG G W, WANG Y Z. High resolution laser fringe pattern projection based on MEMS micro-vibration mirror scanning for 3D measurement[J]. Optics & Laser Technology, 142, 107189(2021).
[80] QU J S, GAO H X, ZHANG R H et al. High-flexibility and high-accuracy phase delay calibration method for MEMS-based fringe projection systems[J]. Optics Express, 31, 1049-1066(2023).
[81] YANG T, LI H H, ZHOU X et al. A high-performance fringe pattern generation method for fringe projection profilometry[C](2017).
[82] SASAKI T, KAMADA T, HANE K. High-speed and large-amplitude resonant varifocal mirror[J]. Journal of Robotics and Mechatronics, 32, 344-350(2020).
[83] YANG G W, SUN C K, WANG P et al. High-speed scanning stroboscopic fringe-pattern projection technology for three-dimensional shape precision measurement[J]. Applied Optics, 53, 174-183(2014).
[84] TANG H M, ROSOWSKI J, FURLONG C et al. Tympanic membrane shape measurement by miniaturized high-speed fringe projection shape measurement using MEMS scanning mirror[C], 25-29(2023).
[85] YANG G W, WANG Y Z. High resolution laser fringe pattern projection based on MEMS micro-vibration mirror scanning for 3D measurement[J]. Optics & Laser Technology, 142, 107189(2021).
[86] TANG H M, PSOTA P, ROSOWSKI J J et al. Ultra-high speed holographic shape and displacement measurements in the hearing sciences[J]. Light: Advanced Manufacturing, 3, 1(2022).
[87] CHEN Z, HU T L, HAO Y Y et al. High-speed phase structured light integrated architecture on FPGA[J]. IEEE Transactions on Industrial Electronics, 71, 1017-1027(2024).
[88] ZHENG Y J, GAO Z S, ZUO C L. Complementary double pulse-width-modulation for 3D shape measurement of complex surfaces[J]. Optics & Laser Technology, 167, 109765(2023).
[89] YANG T, LI H H, ZHOU X et al. A high-performance fringe pattern generation method for fringe projection profilometry[C](2017).
[90] ZHANG Z H, MA H Y, ZHANG S X et al. Simple calibration of a phase-based 3D imaging system based on uneven fringe projection[J]. Optics Letters, 36, 627-629(2011).
[91] FENG S J, ZUO C, ZHANG L et al. Calibration of fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 143, 106622(2021).
[92] ZHAO W J, SU X Y, CHEN W J. Discussion on accurate phase-height mapping in fringe projection profilometry[J]. Optical Engineering, 56, 1(2017).
[93] PEI X H, LIU J Y, YANG Y S et al. Phase-to-coordinates calibration for fringe projection profilometry using Gaussian process regression[J]. IEEE Transactions on Instrumentation Measurement, 71, 3162275(2022).
[94] YIN Y K, ZHANG Z H, LIU X L et al. Review of the system model and calibration for fringe projection profilometry[J]. Infrared and Laser Engineering, 49, 303008(2020).
[95] YANG D, QIAO D Y, XIA C F. Curved light surface model for calibration of a structured light 3D modeling system based on striped patterns[J]. Optics Express, 28, 33240-33253(2020).
[96] YANG S C, YANG T, WU G X et al. Flexible and fast calibration method for uni-directional multi-line structured light system[J]. Optics and Lasers in Engineering, 164, 107525(2023).
[97] ZHANG S. Flexible and high-accuracy method for uni-directional structured light system calibration[J]. Optics and Lasers in Engineering, 143, 106637(2021).
[98] YANG Y, MIAO Y P, LIU X L et al. Intrinsic parameter-free calibration of FPP using a ray phase mapping model[J]. Optics Letters, 47, 3564-3567(2022).
[99] SHANG W, LIU S, WANG J Z et al. Analysis and reduction of error caused by tested object using fringe projection technique with wavelet transform[J]. Optik, 221, 165372(2020).
[100] WU Y X, CAI X J, ZHU J J et al. Analysis and reduction of the phase error caused by the non-impulse system psf in fringe projection profilometry[J]. Optics and Lasers in Engineering, 127, 105987(2020).
[101] YANG S R, LIU M, SONG J H et al. Projector distortion residual compensation in fringe projection system[J]. Optics and Lasers in Engineering, 114, 104-110(2019).
[102] 刘锦涛, 徐鹏, 王建华. 噪声干扰的相位误差与相位展开可靠性研究[J]. 激光技术, 48, 240-248(2024).
LIU J T, XU P, WANG J H et al. Research on phase error and phase unwrapping reliability of noise interference[J]. Laser Technology, 48, 240-248(2024).
[103] LI J L, HASSEBROOK L G, GUAN C. Optimized two-frequency phase-measuring-profilometry light-sensor temporal-noise sensitivity[J]. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 20, 106-115(2003).
[104] ZUO C, HUANG L, ZHANG M L et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 85, 84-103(2016).
[105] HAN M, WANG X H, LI X H. Fast and accurate fringe projection based on a MEMS microvibration mirror[C], 12, 2(2024).
[106] YAN K T, YU Y J, HUANG C T et al. Fringe pattern denoising based on deep learning[J]. Optics Communications, 437, 148-152(2019).
[107] LIU Q, WANG Y, HE J G et al. Phase shift extraction and wavefront retrieval from interferograms with background and contrast fluctuations[J]. Journal of Optics, 17(2015).
[108] LU Y Y, ZHANG R H, GUO H W. Correction of illumination fluctuations in phase-shifting technique by use of fringe histograms[J]. Applied Optics, 55, 184-197(2016).
[109] CHEN C, WAN Y Y, CAO Y P. Instability of projection light source and real-time phase error correction method for phase-shifting profilometry[J]. Optics Express, 26, 4258-4270(2018).
[110] ZHU H J, GUO H W. Alternate iterative least-squares algorithm based on nonuniform phase shifting for suppressing nonlinearity errors in fringe projection profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 71, 1-13(2022).
[111] ZHENG Z J, GAO J, MO J H et al. A fast self-correction method for nonlinear sinusoidal fringe images in 3-D measurement[J]. IEEE Transactions on Instrumentation and Measurement, 70, 1-9(2021).
[112] SUN Z, DUAN M H, ZHENG Y B et al. Intensity diffusion: a concealed cause of fringe distortion in fringe projection profilometry[J]. Photonics Research, 10, 1210(2022).
[113] WU Z J, GUO W B, LU L L et al. Generalized phase unwrapping method that avoids jump errors for fringe projection profilometry[J]. Optics Express, 29, 27181-27192(2021).
[114] MO J H, GAO J, ZHENG Z J et al. Robust composite sine-trapezoidal phase-shifting algorithm for nonlinear intensity[J]. Optics and Lasers in Engineering, 128, 106048(2020).
[115] CAI Z W, LIU X L, JIANG H et al. Flexible phase error compensation based on Hilbert transform in phase shifting profilometry[J]. Optics Express, 23, 25171-25181(2015).
[116] WANG Y W, CAI J X, ZHANG D S et al. Nonlinear correction for fringe projection profilometry with shifted-phase histogram equalization[J]. IEEE Transactions on Instrumentation Measurement, 71, 3145361(2022).
[117] ZHANG W, YU L D, LI W S et al. Black-box phase error compensation for digital phase-shifting profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 66, 2755-2761(2017).
[118] WANG Y W, XU H Z, ZHU H J et al. Nonlinear high-order harmonics correction for phase measuring profilometry[J]. Optics & Laser Technology, 170, 110248(2024).
[119] WANG J H, YANG Y X. Triple
[120] ZHANG S. Comparative study on passive and active projector nonlinear gamma calibration[J]. Applied Optics, 54, 3834(2015).
[121] HUANG P S, HU Q J, CHIANG F P. Double three-step phase-shifting algorithm[J]. Applied Optics, 41, 4503-4509(2002).
[122] ZHANG S, YAU S T. Generic nonsinusoidal phase error correction for three-dimensional shape measurement using a digital video projector[J]. Applied Optics, 46, 36-43(2007).
[123] BING P, QIAN K M, LEI H et al. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting digital fringe projection profilometry[J]. Optics Letters, 34, 416-418(2009).
[124] SONG H X, KONG L B. Mask information-based gamma correction in fringe projection profilometry[J]. Optics Express, 31, 19478-19490(2023).
[125] WANG J, WU Z X, HUANG Y Y et al. A rapid and accurate gamma compensation method based on double response curve fitting for high-quality fringe pattern generation[J]. Optics & Laser Technology, 160, 109084(2023).
[126] MUÑOZ A, FLORES J L, PARRA-ESCAMILLA G et al. Least-squares gamma estimation in fringe projection profilometry[J]. Applied Optics, 60, 1137-1142(2021).
[127] YU X, LIU Y K, LIU N Y et al. Flexible gamma calculation algorithm based on probability distribution function in digital fringe projection system[J]. Optics Express, 27, 32047-32057(2019).
[128] CAI S A, CUI J, LI W et al. Flexible nonlinear error correction method based on support vector regression in fringe projection profilometry[J]. IEEE Transactions on Instrumentation and Measurement, 1(2022).
[129] LI Z W, LI Y F. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry[J]. Optics Letters, 36, 154-156(2011).
[130] HOANG T, PAN B, NGUYEN D et al. Generic gamma correction for accuracy enhancement in fringe-projection profilometry[J]. Optics Letters, 35, 1992-1994(2010).
[131] 孙进, 马煜中, 杨晗. 结构光三维测量非线性相位误差主动校正法[J]. 仪表技术与传感器, 117-121, 126(2019).
SUN J, MA Y ZH, YANG H et al. Active correction of nonlinear phase error for structural light three-dimensional measurement[J]. Instrument Technique and Sensor, 2019, 117-121, 126.
[132] HAN M, SHI W J, LU S H et al. Internal-external layered phase shifting for phase retrieval[J]. IEEE Transactions on Instrumentation Measurement, 73, 3338721(2024).
[133] SCHWIDER J, BUROW R, ELSSNER K E et al. Digital wave-front measuring interferometry: some systematic error sources[J]. Applied Optics, 22, 3421(1983).
[134] HARIHARAN P, OREB B F, EIJU T. Digital phase-shifting interferometry: a simple error-compensating phase calculation algorithm[J]. Applied Optics, 26, 2504-2506(1987).
[135] LAI X, LI Y Y, ZHANG Q C. Background-extracted extended Kalman filter-based phase shift estimation algorithm for phase shifting profilometry system[J]. Optics & Laser Technology, 170, 110270(2024).
[136] ZHOU X C.
周星灿. 相移条纹投影动态三维测量中相位误差补偿方法研究[D](2020).
[137] 朱进进. 结构光三维成像技术动态测量中相位提取方法研究[D](2022).
ZHU J J.
[138] 曹智睿. 基于相移条纹投影的动态3D测量误差补偿技术[J]. 中国光学(中英文), 184-192(2023).
CAO ZH R. Dynamic 3D measurement error compensation technology based on phase-shifting and fringe projection[J]. Chinese Optics, 184-192(2023).
[139] GUO W B, WU Z J, ZHANG Q C et al. Real-time motion-induced error compensation for 4-step phase-shifting profilometry[J]. Optics Express, 29, 23822-23834(2021).
[140] LIU X R, TAO T Y, WAN Y Y et al. Real-time motion-induced-error compensation in 3D surface-shape measurement[J]. Optics Express, 27, 25265-25279(2019).
[141] LU L, SURESH V, ZHENG Y et al. Motion induced error reduction methods for phase shifting profilometry: a review[J]. Optics and Lasers in Engineering, 141, 106573(2021).
[142] NGUYEN T T, SLAUGHTER D C et al. Structured light-based 3D reconstruction system for plants[J]. Sensors, 15, 18587-18612(2015).
[143] WANG Z R, LI B, ZHOU Y B. Fast 3D reconstruction of tool wear based on monocular vision and multi-color structured light illuminator[C]. China. SPIE(2014).
[144] FU B, YANG R G. Robust near-infrared structured light scanning for 3D human model reconstruction[C](2014).
[145] ZHANG B H, HUANG W Q, WANG C P et al. Computer vision recognition of stem and calyx in apples using near-infrared linear-array structured light and 3D reconstruction[J]. Biosystems Engineering, 139, 25-34(2015).
[146] SONG L M, LI X Y, YANG Y G et al. Structured-light based 3D reconstruction system for cultural relic packaging[J]. Sensors, 18, 2981(2018).
[147] WU F F, LI J, YANG H M et al. Research of pavement topography based on NURBS reconstruction for 3D structured light[J]. Optik, 194, 163074(2019).
[148] ZHENG S, ZHOU Y, HUANG R et al. A method of 3d measurement and reconstruction for cultural relics in museums[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 5, 145-149(2012).
[149] GARCÍA-MOLINA D F, LÓPEZ-LAGO S, HIDALGO-FERNANDEZ R E et al. Digitalization and 3D documentation techniques applied to two pieces of Visigothic sculptural heritage in Merida through structured light scanning[J]. Journal on Computing and Cultural Heritage, 14, 1-19(2021).
[150] CHEN Z J, ZHANG C X, TANG Z Y et al. Three-dimensional reconstruction and deformation identification of slope models based on structured light method[J]. Sensors, 24, 794(2024).
[151] MONTUSIEWICZ J, MIŁOSZ M, KĘSIK J et al. Structured-light 3D scanning of exhibited historical clothing: a first-ever methodical trial and its results[J]. Heritage Science, 9, 74(2021).
[152] QIU S, CAO C Y, ZHANG B et al. Feasibility study of remote sensing using structured light for 3D damage assessments after natural disasters[C], 14, 2014.
[153] ZHANG K, HU Q W, WANG S H. A fast 3D construction of heritage based on rotating structured light[C]. China. SPIE(2011).
[154] SHI T C, QI Y, ZHU C et al. Three-dimensional microscopic image reconstruction based on structured light illumination[J]. Sensors, 21, 6097(2021).
[155] ROBLES C L, GORDO J F R, SANJUáN J M. Structured light in the digital reconstruction of architecture details[J]. Ega-Revista De Expresion Grafica Arquitectonica, 198-207(2018).
[156] QIAN J, DANG S-P, ZHOU X et al. Fast structured illumination three-dimensional color microscopic imaging method based on Hilbert-transform[J]. Acta Physica Sinica, 69, 128701(2020).
[157] FAN J F, OU Y M, LI X et al. Structured light vision based pipeline tracking and 3D reconstruction method for underwater vehicle[J]. IEEE Transactions on Intelligent Vehicles, 9, 3372-3383(2024).
[158] MASSOT-CAMPOS M, OLIVER-CODINA G. Underwater laser-based structured light system for one-shot 3D reconstruction[C], 2, 1138-1141(2014).
[159] BRUNO F, BIANCO G, MUZZUPAPPA M et al. Experimentation of structured light and stereo vision for underwater 3D reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 508-518(2011).
[160] SARAFRAZ A, HAUS B K. A structured light method for underwater surface reconstruction[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 40-52(2016).
[161] LI B Z, XU Z J, GAO F et al. 3D reconstruction of high reflective welding surface based on binocular structured light stereo vision[J]. Machines, 10, 159(2022).
[162] RODRIGUES M, KORMANN M, SCHUHLER C et al. Structured light techniques for 3D surface reconstruction in robotic tasks[C], 805-814(2013).
[163] TAN Z Y, ZHAO B L, JI Y et al. A welding seam positioning method based on polarization 3D reconstruction and linear structured light imaging[J]. Optics & Laser Technology, 151, 108046(2022).
[164] WU Q H, LI W, WU W J et al. 3D reconstruction and simulation for raceway groove of bearings based on structured light[C](2006).
[165] SCHMALZ C, FORSTER F, SCHICK A et al. An endoscopic 3D scanner based on structured light[J]. Medical Image Analysis, 16, 1063-1072(2012).
[166] TRAN T N, YAMAMOTO K, NAMITA T et al. 3D reconstruction of internal structure of animal body using near-infrared light[C](2014).
[167] CLANCY N T, LIN J Y, ARYA S et al. Dual multispectral and 3D structured light laparoscope[C](2015).
[168] 夏晨旭, 郝群, 张一鸣. 基于结构光投影三维重建的人脸特征检测[J]. 激光与光电子学进展, 60, 2211004(2023).
XIA CH X, HAO Q, ZHANG Y M et al. Face feature detection based on structured light projection three-dimensional reconstruction[J]. Laser & Optoelectronics Progress, 60, 2211004(2023).
[169] CHEN H, CUI W. A comparative analysis between active structured light and multi-view stereo vision technique for 3D reconstruction of face model surface[J]. Optik, 206, 164190(2020).
[170] ZHANG T, CAO Y. Improved lightweight deep learning algorithm in 3D reconstruction[J]. Computers, 72, 5315-5325(2022).
[171] NGUYEN A H, SUN B, LI C Q et al. Different structured-light patterns in single-shot 2D-to-3D image conversion using deep learning[J]. Applied Optics, 61, 10105-10115(2022).
Get Citation
Copy Citation Text
Min HAN, Chenping ZHANG, Zonghua ZHANG, Xinghui LI. Review of MEMS vibration-mirror-based 3D reconstruction of structured light[J]. Optics and Precision Engineering, 2025, 33(7): 1065
Category:
Received: Dec. 16, 2024
Accepted: --
Published Online: Jun. 23, 2025
The Author Email: Zonghua ZHANG (zhzhang@hebut.edu.cn)