Chinese Journal of Lasers, Volume. 51, Issue 9, 0907018(2024)

Label‐free Quantitative Microscopic Imaging Technique Based on Hyperspectral Interferometric Reconstruction

Rongxin Fu1、*, Ai Xin1, Shuhao Zhang2, Jie Fei3, Shan Qin1, Hanqi Hu1, Tianqi Zhou1, Shuailong Zhang4, and Hang Li1
Author Affiliations
  • 1School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
  • 2School of Automation, Beijing Institute of Technology, Beijing 100081, China
  • 3CSSC Systems Engineering Research Institute, Beijing 100094, China
  • 4School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    References(22)

    [1] Skylaki S, Hilsenbeck O, Schroeder T. Challenges in long-term imaging and quantification of single-cell dynamics[J]. Nature Biotechnology, 34, 1137-1144(2016).

    [2] Rust M J, Bates M, Zhuang X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 3, 793-796(2006).

    [3] Holden S J, Uphoff S, Kapanidis A N. DAOSTORM: an algorithm for high- density super-resolution microscopy[J]. Nature Methods, 8, 279-280(2011).

    [4] Shroff H, Galbraith C G, Galbraith J A et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 5, 417-423(2008).

    [5] Hoebe R A, van Oven C H, Gadella T W J, Jr et al. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging[J]. Nature Biotechnology, 25, 249-253(2007).

    [6] Tao X D, Fernandez B, Azucena O et al. Adaptive optics confocal microscopy using direct wavefront sensing[J]. Optics Letters, 36, 1062-1064(2011).

    [7] Lopez C A, Daaboul G G, Vedula R S et al. Label-free multiplexed virus detection using spectral reflectance imaging[J]. Biosensors & Bioelectronics, 26, 3432-3437(2011).

    [8] Ozkumur E, Needham J W, Bergstein D A et al. Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications[J]. Proceedings of the National Academy of Sciences of the United States of America, 105, 7988-7992(2008).

    [9] Fu R X, Su Y, Wang R L et al. Single cell capture, isolation, and long-term in situ imaging using quantitative self-interference spectroscopy[J]. Cytometry Part A, 99, 601-609(2021).

    [10] Fu R X, Su Y, Wang R L et al. Label-free tomography of living cellular nanoarchitecture using hyperspectral self-interference microscopy[J]. Biomedical Optics Express, 10, 2757-2767(2019).

    [11] Yi J, Liu W Z, Chen S Y et al. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation[J]. Light, Science & Applications, 4, e334(2015).

    [12] Cherkezyan L, Capoglu I, Subramanian H et al. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations[J]. Physical Review Letters, 111, 033903(2013).

    [13] Uttam S, Liu Y. Fourier phase based depth-resolved nanoscale nuclear architecture mapping for cancer detection[J]. Methods, 136, 134-151(2018).

    [14] Bhaduri B, Pham H, Mir M et al. Diffraction phase microscopy with white light[J]. Optics Letters, 37, 1094-1096(2012).

    [15] Mir M, Wang Z, Shen Z et al. Optical measurement of cycle-dependent cell growth[J]. Proceedings of the National Academy of Sciences of the United States of America, 108, 13124-13129(2011).

    [16] Ma Y, Guo S Y, Pan Y et al. Quantitative phase microscopy with enhanced contrast and improved resolution through ultra-oblique illumination (UO-QPM)[J]. Journal of Biophotonics, 12, e201900011(2019).

    [17] Shan M G, Kandel M E, Popescu G. Refractive index variance of cells and tissues measured by quantitative phase imaging[J]. Optics Express, 25, 1573-1581(2017).

    [18] Su Y, Fu R X, Du W L et al. Label-free and quantitative dry mass monitoring for single cells during in situ culture[J]. Cells, 10, 1635(2021).

    [19] Fu R X, Du W L, Jin X Y et al. Microfluidic biosensor for rapid nucleic acid quantitation based on hyperspectral interferometric amplicon-complex analysis[J]. ACS Sensors, 6, 4057-4066(2021).

    [20] Zhao H, Wu T F, Zhou Q et al. Fast detection method for frequency scanning interference signals of non-cooperative targets[J]. Acta Optica Sinica, 43, 0712001(2023).

    [21] Zhu F, An J S, Shi H L et al. Simultaneous spatial and spectral information recovery for interferometric imaging spectrometer[J]. Acta Optica Sinica, 42, 2430001(2022).

    [22] Zhao Y R, Yan K D, Li J Y et al. Design of portable quantitative phase microscopy imaging system[J]. Laser & Optoelectronics Progress, 60, 2211005(2023).

    Tools

    Get Citation

    Copy Citation Text

    Rongxin Fu, Ai Xin, Shuhao Zhang, Jie Fei, Shan Qin, Hanqi Hu, Tianqi Zhou, Shuailong Zhang, Hang Li. Label‐free Quantitative Microscopic Imaging Technique Based on Hyperspectral Interferometric Reconstruction[J]. Chinese Journal of Lasers, 2024, 51(9): 0907018

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Dec. 1, 2023

    Accepted: Feb. 5, 2024

    Published Online: Apr. 26, 2024

    The Author Email: Fu Rongxin (furongxin@bit.edu.cn)

    DOI:10.3788/CJL231463

    CSTR:32183.14.CJL231463

    Topics