Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210008(2022)
Hyperspectral Image Classification Based on Residual Generative Adversarial Network
[7] He J X, Chen S B, Wang Y et al. An accurate approach to hyperspectral mineral identification based on naive Bayesian classification model[J]. Spectroscopy and Spectral Analysis, 34, 505-509(2014).
[10] Tu B, Zhang X F, Zhang G Y et al. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 31, 22-32(2019).
[11] Liu J M, Zheng C, Zhang L M et al. Hyperspectral image classification method based on image reconstruction feature fusion[J]. Chinese Journal of Lasers, 48, 0910001(2021).
[16] Wang X, Fan Y G. Hyperspectral image classification based on modified DenseNet and spatial spectrum attention mechanism[J]. Laser & Optoelectronics Progress, 59, 0210014(2022).
[17] Zhang X D, Wang T J, Zhu S J et al. Hyperspectral image classification based on dilated convolutional attention neural network[J]. Acta Optica Sinica, 41, 0310001(2021).
[24] Srivastava N, Hinton G E, Krizhevsky A et al. Dropout: a simple way to prevent neural networks from overfitting[J]. Journal of Machine Learning Research, 15, 1929-1958(2014).
[25] Peng Y L, Zhang L, Zhang Y et al. Deep deconvolution neural network for image super-resolution[J]. Journal of Software, 29, 926-934(2018).
[27] Tarabalka Y, Fauvel M, Chanussot J et al. SVM- and MRF-based method for accurate classification of hyperspectral images[J]. IEEE Geoscience and Remote Sensing Letters, 7, 736-740(2020).
Get Citation
Copy Citation Text
Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008
Category: Image Processing
Received: Aug. 2, 2021
Accepted: Oct. 19, 2021
Published Online: Sep. 23, 2022
The Author Email: Ming Chen (mchen@shou.edu.cn)