Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210008(2022)
Hyperspectral Image Classification Based on Residual Generative Adversarial Network
Fig. 3. Flowchart of hyperspectral image classification method using residual generative adversarial network
Fig. 6. Structure for residual block of discriminator. (a) Block structure with convolution residuals; (b) Block structure without convolution residuals
Fig. 11. Hyperspectral image classification result map of Indian Pines dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
Fig. 12. Hyperspectral image classification result map of Pavia University dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
Fig. 13. Hyperspectral image classification result map of Salinas dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
|
|
|
|
|
|
|
Get Citation
Copy Citation Text
Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008
Category: Image Processing
Received: Aug. 2, 2021
Accepted: Oct. 19, 2021
Published Online: Sep. 23, 2022
The Author Email: Ming Chen (mchen@shou.edu.cn)