Laser & Optoelectronics Progress, Volume. 59, Issue 22, 2210008(2022)

Hyperspectral Image Classification Based on Residual Generative Adversarial Network

Ming Chen*, Xiangyun Xi, and Yang Wang
Author Affiliations
  • Department of Information, Shanghai Ocean University, Shanghai 201306, China
  • show less
    Figures & Tables(20)
    Framework of GAN for hyperspectral image classification
    Sructure of residual unit
    Flowchart of hyperspectral image classification method using residual generative adversarial network
    Structure for residual block of generator
    Network structure of generator
    Structure for residual block of discriminator. (a) Block structure with convolution residuals; (b) Block structure without convolution residuals
    Network structure of discriminator
    Pavia University dataset. (a) Pseudo color image; (b) ground datum map
    Salinas dataset. (a) Pseudo color image; (b) ground datum map
    Indian Pines dataset. (a) Pseudo color image; (b) ground datum map
    Hyperspectral image classification result map of Indian Pines dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Hyperspectral image classification result map of Pavia University dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    Hyperspectral image classification result map of Salinas dataset. (a) CAE-SVM; (b) 2DCNN; (c) 3DCNN; (d) ResNet;(e) proposed method
    • Table 1. Categories and number of Pavia University hyperspectral dataset

      View table

      Table 1. Categories and number of Pavia University hyperspectral dataset

      ClassNameColorSample
      1Asphalt6631
      2Meadows18649
      3Gravel2099
      4Trees3064
      5Painted metal sheets1345
      6Bare Soil5029
      7Bitumen1330
      8Self-Blocking Bricks3682
      9Shadows947
    • Table 2. Categories and number of Salinas hyperspectral dataset

      View table

      Table 2. Categories and number of Salinas hyperspectral dataset

      ClassNameColorSample
      1Brocoli_green_weeds_12009
      2Brocoli_green_weeds_23726
      3Fallow1976
      4Fallow_rough_plow1394
      5Fallow_smooth2678
      6Stubble3959
      7Celery3579
      8Grapes_untrained11271
      9Soil_vinyard_develop6203
      10Corn_senesced_green_weeds3278
      11Lettuce_romaine_4wk1068
      12Lettuce_romaine_5wk1927
      13Lettuce_romaine_6wk916
      14Lettuce_romaine_7wk1070
      15Vinyard_untrained7268
      16Vinyard_vertical_trellis1807
    • Table 3. Categories and number of Indian Pines dataset

      View table

      Table 3. Categories and number of Indian Pines dataset

      ClassNameColorSample
      1Alfalfa46
      2Corn-notill1428
      3Corn-mintill830
      4Corn237
      5Grass-pasture483
      6Grass-trees730
      7Grass-pasture-mowed28
      8Hay-windrowed478
      9Oats20
      10Soybean-notill972
      11Soybean-mintill2455
      12Soybean-clean593
      13Wheat205
      14Woods1265
      15Buildings-Grass-Trees-Drives386
      16Stone-Steel-Towers93
    • Table 4. Comparison of classification results of ablation experiments

      View table

      Table 4. Comparison of classification results of ablation experiments

      IndexGANGAN with residual genenratorGAN with residual discriminatorProposed method
      IPPUSAIPPUSAIPPUSAIPPUSA
      OA95.8596.5996.5796.5297.1197.5397.2197.3497.9398.8499.0099.09
      AA94.1094.4298.0298.5095.7798.6996.3896.2598.7798.4898.7499.45
      K95.2795.4796.1896.0396.1697.2596.8296.4697.6998.6998.6798.98
    • Table 5. Comparison of classification accuracy of Indian Pines hyperspectral dataset

      View table

      Table 5. Comparison of classification accuracy of Indian Pines hyperspectral dataset

      IndexCAE-SVM2DCNN3DCNNResNetProposed method
      OA76.8185.9393.8597.0598.84
      AA75.5287.2394.1396.7898.48
      K75.2884.3092.7796.6398.69
    • Table 6. Comparison of classification accuracy of Pavia University hyperspectral dataset

      View table

      Table 6. Comparison of classification accuracy of Pavia University hyperspectral dataset

      IndexCAE-SVM2DCNN3DCNNResNetProposed
      OA84.2890.8195.6997.2499.00
      AA70.8586.2594.2396.3998.74
      K78.6787.7194.2996.3598.67
    • Table 7. Comparison of classification accuracy of Salinas hyperspectral dataset

      View table

      Table 7. Comparison of classification accuracy of Salinas hyperspectral dataset

      IndexCAE-SVM2DCNN3DCNNResNetProposed
      OA84.3491.2295.4197.2099.09
      AA79.9793.0296.0798.3199.45
      K82.5290.2294.1596.9198.98
    Tools

    Get Citation

    Copy Citation Text

    Ming Chen, Xiangyun Xi, Yang Wang. Hyperspectral Image Classification Based on Residual Generative Adversarial Network[J]. Laser & Optoelectronics Progress, 2022, 59(22): 2210008

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Aug. 2, 2021

    Accepted: Oct. 19, 2021

    Published Online: Sep. 23, 2022

    The Author Email: Ming Chen (mchen@shou.edu.cn)

    DOI:10.3788/LOP202259.2210008

    Topics