Chinese Journal of Lasers, Volume. 50, Issue 3, 0307204(2023)

Construction of Photothermal/Chemotherapy Synergistic Therapy Nano Reagent Based on Two‐Dimensional Ti3C2 (MXene) and Its Photothermal Effect

Gege Fu, Yang Lu, Jialin Pan, Xu Li, Chenguang Wang, Xiaomin Liu*, and Geyu Lu
Author Affiliations
  • State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, Jilin, China
  • show less
    References(34)

    [1] Wei W F, Zhang X Y, Zhang S et al. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: a review[J]. Materials Science and Engineering: C, 104, 109891(2019).

    [2] Wu J R, Bremner D H, Niu S W et al. Chemodrug-gated biodegradable hollow mesoporous organosilica nanotheranostics for multimodal imaging-guided low-temperature photothermal therapy/chemotherapy of cancer[J]. ACS Applied Materials & Interfaces, 10, 42115-42126(2018).

    [3] Liu H J, Wang M M, Hu X X et al. Enhanced photothermal therapy through the in situ activation of a temperature and redox dual-sensitive nanoreservoir of triptolide[J]. Small, 16, e2003398(2020).

    [4] Chen B Q, Kankala R K, Zhang Y et al. Gambogic acid augments black phosphorus quantum dots (BPQDs)-based synergistic chemo-photothermal therapy through downregulating heat shock protein expression[J]. Chemical Engineering Journal, 390, 124312(2020).

    [5] Chen J Q, Ning C Y, Zhou Z N et al. Nanomaterials as photothermal therapeutic agents[J]. Progress in Materials Science, 99, 1-26(2019).

    [6] Gao G, Sun X B, Liang G L. Nanoagent‐promoted mild‐temperature photothermal therapy for cancer treatment[J]. Advanced Functional Materials, 31, 2100738(2021).

    [7] Fu Z, Williams G R, Niu S W et al. Functionalized boron nanosheets as an intelligent nanoplatform for synergistic low-temperature photothermal therapy and chemotherapy[J]. Nanoscale, 12, 14739-14750(2020).

    [8] Yang L J, Hou X X, Zhang Y M et al. NIR-activated self-sensitized polymeric micelles for enhanced cancer chemo-photothermal therapy[J]. Journal of Controlled Release, 339, 114-129(2021).

    [9] Li L, Zhang Y, Li M X et al. Current application and progress of laser technology in ophthalmology[J]. Chinese Journal of Lasers, 49, 0507103(2022).

    [10] Sun Q Q, Tang K, Song L Q et al. Covalent organic framework based nanoagent for enhanced mild-temperature photothermal therapy[J]. Biomaterials Science, 9, 7977-7983(2021).

    [11] Sun T T, Chen X X, Wang X et al. Enhanced efficacy of photothermal therapy by combining a semiconducting polymer with an inhibitor of a heat shock protein[J]. Materials Chemistry Frontiers, 3, 127-136(2019).

    [12] Huang X Y, Lu Y, Guo M X et al. Recent strategies for nano-based PTT combined with immunotherapy: from a biomaterial point of view[J]. Theranostics, 11, 7546-7569(2021).

    [13] Jung H S, Verwilst P, Sharma A et al. Organic molecule-based photothermal agents: an expanding photothermal therapy universe[J]. Chemical Society Reviews, 47, 2280-2297(2018).

    [14] Liang G H, Xing D. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers, 45, 0207020(2018).

    [15] Li Z, Qian W N, Wei S M et al. Application of photothermal conversion nanomaterials in tumor photothermal therapy[J]. Laser&Optoelectronics Progress, 57, 170005(2020).

    [16] Ruiz-Pérez L, Rizzello L, Wang J P et al. Polypyrrole and polyaniline nanocomposites with high photothermal conversion efficiency[J]. Soft Matter, 16, 4569-4573(2020).

    [17] Kurtoglu M, Naguib M, Gogotsi Y et al. First principles study of two-dimensional early transition metal carbides[J]. MRS Communications, 2, 133-137(2012).

    [18] Huang H Y, Jiang R M, Feng Y L et al. Recent development and prospects of surface modification and biomedical applications of MXenes[J]. Nanoscale, 12, 1325-1338(2020).

    [19] Soleymaniha M, Shahbazi M A, Rafieerad A R et al. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations[J]. Advanced Healthcare Materials, 8, e1801137(2019).

    [20] Lu B B, Zhu Z Y, Ma B Y et al. 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects[J]. Small, 17, e2100946(2021).

    [21] Yu Z Z, Jiang L, Liu R Y et al. Versatile self-assembled MXene-Au nanocomposites for SERS detection of bacteria, antibacterial and photothermal sterilization[J]. Chemical Engineering Journal, 426, 131914(2021).

    [22] Rashid B, Anwar A, Shahabuddin S et al. A comparative study of cytotoxicity of PPG and PEG surface-modified 2-D Ti3C2 MXene flakes on human cancer cells and their photothermal response[J]. Materials, 14, 4370(2021).

    [23] Han X X, Huang J, Lin H et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer[J]. Advanced Healthcare Materials, 7, e1701394(2018).

    [24] Tabuchi Y, Kondo T. Targeting heat shock transcription factor 1 for novel hyperthermia therapy (review)[J]. International Journal of Molecular Medicine, 32, 3-8(2013).

    [25] Fu B, Zhao X L, Zhang H et al. Application and progress of laser technology in thrombus ablation[J]. Chinese Journal of Lasers, 49, 1907001(2022).

    [26] Gao G, Jiang Y W, Sun W et al. Molecular targeting-mediated mild-temperature photothermal therapy with a smart albumin-based nanodrug[J]. Small, 1900501(2019).

    [27] Zhong Y P, Zou Y B, Liu L Y et al. pH-responsive Ag2S nanodots loaded with heat shock protein 70 inhibitor for photoacoustic imaging-guided photothermal cancer therapy[J]. Acta Biomaterialia, 115, 358-370(2020).

    [28] Tian H L, Zhang J, Zhang H Y et al. Low side-effect and heat-shock protein-inhibited chemo-phototherapy nanoplatform via co-assembling strategy of biotin-tailored IR780 and quercetin[J]. Chemical Engineering Journal, 382, 123043(2020).

    [29] Cho K, Wang X, Nie S M et al. Therapeutic nanoparticles for drug delivery in cancer[J]. Clinical Cancer Research, 14, 1310-1316(2008).

    [30] Tang W T, Dong Z L, Zhang R et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window[J]. ACS Nano, 13, 284-294(2019).

    [31] Lin H, Wang X G, Yu L D et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion[J]. Nano Letters, 17, 384-391(2017).

    [32] Lin H, Gao S S, Dai C et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-Ⅰ and NIR-Ⅱ biowindows[J]. Journal of the American Chemical Society, 139, 16235-16247(2017).

    [33] Zeng J, Goldfeld D, Xia Y N. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch[J]. Angewandte Chemie (International Ed. in English), 52, 4169-4173(2013).

    [34] Hessel C M, Pattani V P, Rasch M et al. Copper selenide nanocrystals for photothermal therapy[J]. Nano Letters, 11, 2560-2566(2011).

    Tools

    Get Citation

    Copy Citation Text

    Gege Fu, Yang Lu, Jialin Pan, Xu Li, Chenguang Wang, Xiaomin Liu, Geyu Lu. Construction of Photothermal/Chemotherapy Synergistic Therapy Nano Reagent Based on Two‐Dimensional Ti3C2 (MXene) and Its Photothermal Effect[J]. Chinese Journal of Lasers, 2023, 50(3): 0307204

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Diagnostics and Therapy

    Received: Sep. 5, 2022

    Accepted: Oct. 10, 2022

    Published Online: Feb. 6, 2023

    The Author Email: Liu Xiaomin (xiaominliu@jlu.edu.cn)

    DOI:10.3788/CJL221211

    Topics