Laser & Optoelectronics Progress, Volume. 57, Issue 23, 232301(2020)

Broadband Transmission Infrared Light Modulator Based on Graphene Plasma

Zhihao Yuan1,2, Yu Xu3, Bing Cao1,2、*, and Qinhua Wang1,2、*
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • 2Key Lab of Modern Optical Technologies of Education Ministry of China, Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Suzhou, Jiangsu 215006, China
  • 3Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
  • show less
    References(30)

    [5] Liu A, Jones R, Liao L et al. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor[J]. Nature, 427, 615-618(2004).

    [6] Reed G T, Mashanovich G, Gardes F Y et al. Silicon optical modulators[J]. Nature Photonics, 4, 518-526(2010).

    [7] Novoselov K S. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [10] Li Q, Tian Z, Zhang X Q et al. Active graphene-silicon hybrid diode for terahertz waves[J]. Nature Communications, 6, 7082(2015).

    [11] Li Q, Tian Z, Zhang X Q et al. Dual control of active graphene-silicon hybrid metamaterial devices[J]. Carbon, 90, 146-153(2015).

    [12] Valmorra F, Scalari G, Maissen C et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial[J]. Nano Letters, 13, 3193-3198(2013).

    [13] Arezoomandan S. Condori Quispe H O, Ramey N, et al. Graphene-based reconfigurable terahertz plasmonics and metamaterials[J]. Carbon, 112, 177-184(2017).

    [18] Liu J T, Liu N H, Li J et al. Enhanced absorption of graphene with one-dimensional photonic crystal[J]. Applied Physics Letters, 101, 052104(2012).

    [20] Cai Y J, Zhu J F, Liu Q H et al. Enhanced spatial near-infrared modulation of graphene-loaded perfect absorbers using plasmonic nanoslits[J]. Optics Express, 23, 32318-32328(2015).

    [21] Dabidian N, Kholmanov I, Khanikaev A B et al. Electrical switching of infrared light using graphene integration with plasmonic Fano resonant metasurfaces[J]. ACS Photonics, 2, 216-227(2015).

    [22] Liu M, Yin X, Ulin-Avila E et al. A graphene-based broadband optical modulator[J]. Nature, 474, 64-67(2011).

    [24] Gao W L, Shu J, Qiu C Y et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano, 6, 7806-7813(2012).

    [25] Falkovsky L, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 76, 153410(2007).

    [28] Cheng J R, Fan F, Chang S J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 9, 398(2019).

    [29] Wang W, Meng Z, Liang R S et al. A dynamically tunable plasmonic multi-functional device based on graphene nano-sheet pair arrays[J]. Optics Communications, 415, 130-134(2018).

    [30] Zhu A J, Qian Q Y, Yan Y et al. Ultrathin plasmonic quarter waveplate using broken rectangular annular metasurface[J]. Optics & Laser Technology, 92, 120-125(2017).

    Tools

    Get Citation

    Copy Citation Text

    Zhihao Yuan, Yu Xu, Bing Cao, Qinhua Wang. Broadband Transmission Infrared Light Modulator Based on Graphene Plasma[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232301

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Devices

    Received: Mar. 20, 2020

    Accepted: Apr. 13, 2020

    Published Online: Nov. 25, 2020

    The Author Email: Bing Cao (bcao2006@163.com), Qinhua Wang (bcao2006@163.com)

    DOI:10.3788/LOP57.232301

    Topics