Chinese Journal of Lasers, Volume. 48, Issue 15, 1507002(2021)

Research Progress in Intelligent and Precise Optical Diagnosis and Treatment Technology

Yangxi Li... Chengquan Hu, Longfei Ma, Xinran Zhang and Hongen Liao* |Show fewer author(s)
Author Affiliations
  • Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
  • show less
    References(143)

    [2] Izzo F, Granata V, Grassi R et al. Radiofrequency ablation and microwave ablation in liver tumors: an update[J]. The Oncologist, 24, e990-e1005(2019).

    [3] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 0008(2017).

    [4] Boppart S A, Brown J Q, Farah C S et al. Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment[J]. Journal of Biomedical Optics, 23, 021104(2017).

    [5] Zhang Z X. Biomedical photonics: diagnosis, therapy and monitoring[M](2017).

    [6] El Ahmadieh T Y, Aoun S G, Lega B C. Autofluorescence technology in glioblastoma resection: evolution of new tool and approach[J]. World Neurosurgery, 126, 139-141(2019).

    [7] Jermyn M, Mok K, Mercier J et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science Translational Medicine, 7, 274ra19(2015).

    [8] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).

    [9] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).

    [10] Walter S M D, Susanne S M D, Simon W M D et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence[J]. Neurosurgery, 42, 518-526(1998).

    [11] Shinoda J, Yano H, Yoshimura S I et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note[J]. Journal of Neurosurgery, 99, 597-603(2003).

    [12] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).

    [13] Valdes P A, Kim A, Brantsch M et al. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy[J]. Neuro-Oncology, 13, 846-856(2011).

    [15] Alston L, Mahieu-Williame L, Hebert M et al. Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas[J]. Biomedical Optics Express, 10, 2478-2492(2019).

    [16] Haj-Hosseini N, Richter J, Andersson-Engels S et al. Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid[J]. Lasers in Surgery and Medicine, 42, 9-14(2010).

    [17] Leclerc P, Ray C, Mahieu-Williame L et al. Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy[J]. Scientific Reports, 10, 1462(2020).

    [18] Butte P V, Pikul B K, Hever A et al. Diagnosis of meningioma by time-resolved fluorescence spectroscopy[J]. Journal of Biomedical Optics, 10, 064026(2005).

    [19] Zhu M Y, Chen F, Liu J et al. Ex vivo classification of spinal cord tumors using autofluorescence spectroscopy with immunohistochemical indexes[J]. Biomedical Optics Express, 9, 4401-4412(2018).

    [20] Zhu M Y, Chang W, Jing L K et al. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery[J]. Theranostics, 9, 2827-2842(2019).

    [21] Li Y P, Deng L Y, Yang X H et al. Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method[J]. Biomedical Optics Express, 10, 4999-5014(2019).

    [22] Lyng F M, Traynor D, Nguyen T N Q et al. Discrimination of breast cancer from benign tumours using Raman spectroscopy[J]. PLoS One, 14, e0212376(2019).

    [23] Mehta K, Atak A, Sahu A et al. An early investigative serum Raman spectroscopy study of meningioma[J]. The Analyst, 143, 1916-1923(2018).

    [24] Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M. Raman spectral feature selection using ant colony optimization for breast cancer diagnosis[J]. Lasers in Medical Science, 33, 1799-1806(2018).

    [25] Bovenkamp D, Sentosa R, Rank E et al. Combination of high-resolution optical coherence tomography and Raman spectroscopy for improved staging and grading in bladder cancer[J]. Applied Sciences, 8, 2371(2018).

    [26] Robichaux-Viehoever A, Kanter E, Shappell H et al. Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia[J]. Applied Spectroscopy, 61, 986-993(2007).

    [27] Ji M, Lewis S, Camelo-Piragua S et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy[J]. Science translational medicine, 7, 309ra163(2015).

    [28] Orringer D A, Pandian B, Niknafs Y S et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature Biomedical Engineering, 1, 0027(2017).

    [29] Hollon T C, Pandian B, Adapa A R et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nature medicine, 26, 52-58(2020).

    [30] Tsai M T, Lee H C, Lu C W et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography[J]. Journal of Biomedical Optics, 13, 044012(2008).

    [31] Zysk A M, Boppart S A. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images[J]. Journal of Biomedical Optics, 11, 054015(2006).

    [32] Lingley-Papadopoulos C A, Loew M H, Manyak M J et al. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis[J]. Journal of Biomedical Optics, 13, 024003(2008).

    [33] Wan S H, Lee H C, Huang X L et al. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy[J]. Medical Image Analysis, 38, 104-116(2017).

    [34] Lenz M, Krug R, Dillmann C et al. Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features[J]. Journal of Biomedical Optics, 23, 071205(2018).

    [35] Kut C, Chaichana K L, Xi J et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Science Translational Medicine, 7, 292ra100(2015).

    [36] Yuan W, Kut C, Liang W et al. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection[J]. Scientific Reports, 7, 44909(2017).

    [37] Turani Z, Fatemizadeh E, Blumetti T et al. Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma[J]. Cancer Research, 79, 2021-2030(2019).

    [38] Almasian M, Wilk L S, Bloemen P R et al. Pilot feasibility study of in vivo intraoperative quantitative optical coherence tomography of human brain tissue during glioma resection[J]. Journal of Biophotonics, 12, e201900037(2019).

    [39] Juarez-Chambi R M, Kut C, Rico-Jimenez J J et al. AI-assisted in situ detection of human glioma infiltration using a novel computational method for optical coherence tomography[J]. Clinical Cancer Research, 25, 6329-6338(2019).

    [40] Moiseev A, Snopova L, Kuznetsov S et al. Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography[J]. Journal of Biophotonics, 11, e201700072(2018).

    [41] Triki A R, Blaschko M B, Jung Y M et al. Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks[J]. Computerized Medical Imaging and Graphics, 69, 21-32(2018).

    [42] Ma Y T, Xu T, Huang X L et al. Computer-aided diagnosis of label-free 3-D optical coherence microscopy images of human cervical tissue[J]. IEEE Transactions on Biomedical Engineering, 66, 2447-2456(2019).

    [43] Zeng Y F, Xu S Q, Chapman W C et al. Real-time colorectal cancer diagnosis using PR-OCT with deep learning[C]. //Optical Coherence Tomography 2020, April 20-23, 2020, Washington, D.C., United States, OW2E, 5(2020).

    [44] Yu Q, Huang S S, Wu Z Y et al. Label-free visualization of early cancer hepatic micrometastasis and intraoperative image-guided surgery by photoacoustic imaging[J]. Journal of Nuclear Medicine, 61, 1079-1085(2020).

    [45] de la Zerda A, Kircher M F, Jokerst J V et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Proceedings of SPIE, 8581, 85810G(2013).

    [46] Liu Y J, Yang Y P, Sun M J et al. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer[J]. Chemical Science, 8, 2710-2716(2017).

    [47] Liu Y, Liu H, Yan H et al. Aggregation-induced absorption enhancement for deep near-infrared II photoacoustic imaging of brain gliomas in vivo[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 6, 1801615(2019).

    [48] Zhang J Y, Chen B, Zhou M et al. Photoacoustic image classification and segmentation of breast cancer: a feasibility study[J]. IEEE Access, 7, 5457-5466(2019).

    [49] Rajanna A R, Ptucha R, Sinha S et al. Prostate cancer detection using photoacoustic imaging and deep learning[J]. Electronic Imaging, 2016, 1-6(2016).

    [50] Moustakidis S, Omar M, Aguirre J et al. Fully automated identification of skin morphology in raster-scan optoacoustic mesoscopy using artificial intelligence[J]. Medical Physics, 46, 4046-4056(2019).

    [51] Jnawali K, Chinni B, Dogra V et al. Automatic cancer tissue detection using multispectral photoacoustic imaging[J]. International Journal of Computer Assisted Radiology and Surgery, 15, 309-320(2020).

    [52] Sakimoto T, Rosenblatt M I, Azar D T. Laser eye surgery for refractive errors[J]. The Lancet, 367, 1432-1447(2006).

    [53] Palanker D V, Blumenkranz M S, Andersen D et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography[J]. Science Translational Medicine, 2, 58ra85(2010).

    [54] Karabag R Y, Parlak M, Cetin G et al. Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports[J]. Digital Journal of Ophthalmology, 21, 8-10(2015).

    [55] Tanzi E L, Lupton J R, Alster T S. Lasers in dermatology: four decades of progress[J]. Journal of the American Academy of Dermatology, 49, 1-34(2003).

    [56] Mcguff P E, Bushnell D, Soroff H S et al. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation)[J]. Surgical Forum, 14, 143-145(1963).

    [57] Bown S G. Phototherapy in tumors[J]. World Journal of Surgery, 7, 700-709(1983).

    [58] Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and future[J]. Journal of Functional Biomaterials, 8, E19(2017).

    [59] Bozinov O, Yang Y, Oertel M F et al. Laser interstitial thermal therapy in gliomas[J]. Cancer Letters, 474, 151-157(2020).

    [60] Salem U, Kumar V A, Madewell J E et al. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT)[J]. Cancer Imaging, 19, 65(2019).

    [62] Malek R S, Barrett D M, Kuntzman R S. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later[J]. Urology, 51, 254-256(1998).

    [63] Sofer M, Watterson J D, Wollin T A et al. Holmium∶YAG laser lithotripsy for upper urinary tract calculi in 598 patients[J]. The Journal of Urology, 167, 31-34(2002).

    [64] Liao H, Noguchi M, Maruyama T et al. Automatic focusing and robotic scanning mechanism for precision laser ablation in neurosurgery[C]. //2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China., 325-330(2010).

    [66] Ross W A, Hill W M, Hoang K B et al. Automating neurosurgical tumor resection surgery: volumetric laser ablation of cadaveric porcine brain with integrated surface mapping[J]. Lasers in Surgery and Medicine, 50, 1017-1024(2018).

    [67] Su B Q, Tang J, Liao H. Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery[C]. //2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015, Hamburg, Germany., 4362-4367(2015).

    [69] Franz P, Wang X M, Zhu H et al. Detection of blackbody radiation during fiber guided laser-tissue vaporization[J]. Biomedical Optics Express, 11, 791-800(2020).

    [70] Kok H P, Kotte A N T J, Crezee J. Planning, optimisation and evaluation of hyperthermia treatments[J]. International Journal of Hyperthermia, 33, 593-607(2017).

    [71] Pham N T, Lee S L, Park S et al. Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy[J]. Journal of Biomedical Optics, 22, 045008(2017).

    [73] Guo S, Wei S, Lee S et al. Intraoperative speckle variance optical coherence tomography for tissue temperature monitoring during cutaneous laser therapy[J]. IEEE Journal of Translational Engineering in Health and Medicine, 7, 1800608(2019).

    [74] Maltais-Tariant R, Boudoux C, Uribe-Patarroyo N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation[J]. Biomedical Optics Express, 11, 2925-2950(2020).

    [75] Periyasamy V, Özsoy Ç, Reiss M et al. In vivo optoacoustic monitoring of percutaneous laser ablation of tumors in a murine breast cancer model[J]. Optics Letters, 45, 2006-2009(2020).

    [76] Nestor M S, Gold M H, Kauvar A N et al. The use of photodynamic therapy in dermatology: results of a consensus conference[J]. Journal of Drugs in Dermatology, 5, 140-154(2006).

    [77] Cairnduff F, Stringer M R, Hudson E J et al. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer[J]. British Journal of Cancer, 69, 605-608(1994).

    [78] Li L B, Luo R C, Liao W J et al. Clinical study of photofrin photodynamic therapy for the treatment of relapse nasopharyngeal carcinoma[J]. Photodiagnosis and Photodynamic Therapy, 3, 266-271(2006).

    [79] Biel M. Advances in photodynamic therapy for the treatment of head and neck cancers[J]. Lasers in Surgery and Medicine, 38, 349-355(2006).

    [80] Wolfsen H C. Carpe luz: seize the light: endoprevention of esophageal adenocarcinoma when using photodynamic therapy with porfimer sodium[J]. Gastrointestinal Endoscopy, 62, 499-503(2005).

    [81] Wolfsen H C, Hemminger L L, Wallace M B et al. Clinical experience of patients undergoing photodynamic therapy for Barrett’s dysplasia or cancer[J]. Alimentary Pharmacology & Therapeutics, 20, 1125-1131(2004).

    [82] Pereira S P, Ayaru L, Rogowska A et al. Photodynamic therapy of malignant biliary strictures using meso-tetrahydroxyphenylchlorin[J]. European Journal of Gastroenterology & Hepatology, 19, 479-485(2007).

    [83] Bown S G, Rogowska A Z, Whitelaw D E et al. Photodynamic therapy for cancer of the pancreas[J]. Gut, 50, 549-557(2002).

    [84] Mahmoudi K, Garvey K L, Bouras A et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas[J]. Journal of Neuro-Oncology, 141, 595-607(2019).

    [85] Inoue K. 5-aminolevulinic acid-mediated photodynamic therapy for bladder cancer[J]. International Journal of Urology, 24, 97-101(2017).

    [86] Agostinis P, Berg K, Cengel K A et al. Photodynamic therapy of cancer: an update[J]. CA: a Cancer Journal for Clinicians, 61, 250-281(2011).

    [87] Cruz P M, Mo H, McConathy W J et al. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics[J]. Frontiers in Pharmacology, 4, 119(2013).

    [88] Kwiatkowski S, Knap B, Przystupski D et al. Photodynamic therapy-mechanisms, photosensitizers and combinations[J]. Biomedicine & Pharmacotherapy, 106, 1098-1107(2018).

    [90] Kim Y R, Kim S, Choi J W et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer[J]. Theranostics, 5, 805-817(2015).

    [91] Starkey J R, Rebane A K, Drobizhev M A et al. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse[J]. Clinical Cancer Research, 14, 6564-6573(2008).

    [92] Hirsch L R, Stafford R J, Bankson J A et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 13549-13554(2003).

    [93] Huang X H, El-Sayed I H, Qian W et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-2120(2006).

    [94] Ali M R K, Wu Y, El-Sayed M A. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application[J]. The Journal of Physical Chemistry C, 123, 15375-15393(2019).

    [95] Rastinehad A R, Anastos H, Wajswol E et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 18590-18596(2019).

    [96] Hu Y Y, Chi C W, Wang S H et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer[J]. Advanced Materials, 29, 1700448(2017).

    [97] Wang S J, Ma X Q, Hong X H et al. Adjuvant photothermal therapy inhibits local recurrences after breast-conserving surgery with little skin damage[J]. ACS Nano, 12, 662-670(2018).

    [98] Liu S Y, Liang Z S, Gao F et al. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells[J]. Journal of Materials Science, 21, 665-674(2010).

    [99] Ali M R K, Rahman M A, Wu Y et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, E3110-E3118(2017).

    [100] Lim H W, Silpa-Archa N, Amadi U et al. Phototherapy in dermatology: a call for action[J]. Journal of the American Academy of Dermatology, 72, 1078-1080(2015).

    [101] Johnson-Huang L M, Suárez-Fariñas M, Sullivan-Whalen M et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques[J]. Journal of Investigative Dermatology, 130, 2654-2663(2010).

    [102] Maisels M J, McDonagh A F. Phototherapy for neonatal jaundice[J]. The New England Journal of Medicine, 358, 920-928(2008).

    [103] Lam R W, Levitt A J, Levitan R D et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder: a randomized clinical trial[J]. JAMA Psychiatry, 73, 56-63(2016).

    [104] Golden R N, Gaynes B N, Ekstrom R D et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence[J]. The American Journal of Psychiatry, 162, 656-662(2005).

    [107] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).

    [108] Gradinaru V, Mogri M, Thompson K R et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 324, 354-359(2009).

    [109] Chow B Y, Boyden E S. Optogenetics and translational medicine[J]. Science Translational Medicine, 5, 177ps5(2013).

    [110] Kramer R H, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins[J]. Nature Neuroscience, 16, 816-823(2013).

    [111] Fan Y W, Ma L F, Chang W et al. Optimized optical coherence tomography imaging with hough transform-based fixed-pattern noise reduction[J]. IEEE Access, 6, 32087-32096(2018).

    [112] Zong W J, Wu R L, Li M L et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely-behaving mice[J]. Nature Methods, 14, 713-719(2017).

    [113] Li L, Zhu L R, Ma C et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 1, 0071(2017).

    [114] Zhou T, Ando T, Nakagawa K et al. Localizing fluorophore (centroid) inside a scattering medium by depth perturbation[J]. Journal of Biomedical Optics, 20, 017003(2015).

    [115] Zhang N, Chen T Y, Huo T C et al. Ultrahigh resolution endoscopic spectral domain optical coherence tomography with a tiny rotary probe driven by a hollow ultrasonic motor[J]. Proceedings of SPIE, 8571, 85713A(2013).

    [116] Iftimia N, Yélamos O, Chen C J et al. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins[J]. Journal of Biomedical Optics, 22, 076006(2017).

    [117] Fichera P. Bringing the light inside the body to perform better surgery[J]. Science Robotics, 6, eabf1523(2021).

    [118] Giataganas P, Hughes M, Yang G Z. Force adaptive robotically assisted endomicroscopy for intraoperative tumour identification[J]. International Journal of Computer Assisted Radiology and Surgery, 10, 825-832(2015).

    [119] Su B Q, Shi Z, Liao H. Micro laser ablation system integrated with image sensor for minimally invasive surgery[C]. //2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 14-18, 2014, Chicago, IL, USA., 2043-2048(2014).

    [120] Zhang B Y, Hu C Q, Yang P H et al. Design and modularization of multi-DoF soft robotic actuators[J]. IEEE Robotics and Automation Letters, 4, 2645-2652(2019).

    [121] York P A, Peña R, Kent D et al. Microrobotic laser steering for minimally invasive surgery[J]. Science Robotics, 6, eabd5476(2021).

    [122] Zong W J, Wu R L, Chen S Y et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nature Methods, 18, 46-49(2021).

    [123] Hu C Q, Chang W, Li Y X et al. A novel OCT image-guided laser automatic ablation method based on non-common optical path structure[M]. //Shiraishi Y, Sakuma I, Naruse K, et al. 11th Asian-Pacific conference on medical and biological engineering. IFMBE proceedings, 82, 215-222(2021).

    [124] Qiu L, Pleskow D K, Chuttani R et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus[J]. Nature Medicine, 16, 603-606(2010).

    [125] Zuo S Y, Yang G Z. Endomicroscopy for computer and robot assisted intervention[J]. IEEE Reviews in Biomedical Engineering, 10, 12-25(2017).

    [126] Wang H B, Ping Z Y, Fan Y W et al. A novel surface-scanning device for intraoperative tumor identification and therapy[J]. IEEE Access, 7, 96392-96403(2019).

    [127] Ping Z Y, Wang H B, Chen X et al. Modular robotic scanning device for real-time gastric endomicroscopy[J]. Annals of Biomedical Engineering, 47, 563-575(2019).

    [128] Kurilchik S, Gacci M, Cicchi R et al. Advanced multimodal laser imaging tool for urothelial carcinoma diagnosis (AMPLITUDE)[J]. Journal of Physics, 2, 021001(2020).

    [129] Zhang L, Ye M L, Giataganas P et al. From macro to micro: autonomous multiscale image fusion for robotic surgery[J]. IEEE Robotics & Automation Magazine, 24, 63-72(2017).

    [131] Lazarides A L, Whitley M J, Strasfeld D B et al. A fluorescence-guided laser ablation system for removal of residual cancer in a mouse model of soft tissue sarcoma[J]. Theranostics, 6, 155-166(2016).

    [132] Fan Y W, Sun Y, Chang W et al. Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden[J]. Theranostics, 8, 4072-4085(2018).

    [133] Fan Y W, Zhang B Y, Chang W et al. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment[J]. International Journal of Computer Assisted Radiology and Surgery, 13, 411-423(2018).

    [134] Chang W, Fan Y W, Zhang X R et al. An intelligent theranostics method using optical coherence tomography guided automatic laser ablation for neurosurgery[C]. //2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 18-21, 2018, Honolulu, HI, USA., 3224-3227(2018).

    [135] Katta N, McElroy A B, Estrada A D et al. Optical coherence tomography image-guided smart laser knife for surgery[J]. Lasers in Surgery and Medicine, 50, 202-212(2018).

    [136] Yuan W, Chen D F, Sarabia-Estrada R et al. Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo[J]. Science Advances, 6, eaaz9664(2020).

    [137] Lee S, Wei S W, Guo S J et al. Selective retina therapy monitoring by speckle variance optical coherence tomography for dosimetry control[J]. Journal of Biomedical Optics, 25, 026001(2020).

    [138] Gao S, Zhang L W, Wang G H et al. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy[J]. Biomaterials, 79, 36-45(2016).

    [139] Peng Y, Liu Y, Lu X J et al. Ag-hybridized plasmonic Au-triangular nanoplates: highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy[J]. Journal of Materials Chemistry B, 6, 2813-2820(2018).

    [140] Chechetka S A, Yu Y, Zhen X et al. Light-driven liquid metal nanotransformers for biomedical theranostics[J]. Nature Communications, 8, 15432(2017).

    [141] Ji X Y, Ge L L, Liu C et al. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics[J]. Nature Communications, 12, 1124(2021).

    [142] Wang Z Y, Ju Y M, Ali Z et al. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics[J]. Nature Communications, 10, 4418(2019).

    [143] Lee H, Lee Y, Song C et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment[J]. Nature Communications, 6, 10059(2015).

    Tools

    Get Citation

    Copy Citation Text

    Yangxi Li, Chengquan Hu, Longfei Ma, Xinran Zhang, Hongen Liao. Research Progress in Intelligent and Precise Optical Diagnosis and Treatment Technology[J]. Chinese Journal of Lasers, 2021, 48(15): 1507002

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: biomedical photonics and laser medicine

    Received: Mar. 16, 2021

    Accepted: May. 20, 2021

    Published Online: Aug. 5, 2021

    The Author Email: Liao Hongen (liao@tsinghua.edu.cn)

    DOI:10.3788/CJL202148.1507002

    Topics