Chinese Journal of Lasers, Volume. 48, Issue 15, 1507002(2021)
Research Progress in Intelligent and Precise Optical Diagnosis and Treatment Technology
[2] Izzo F, Granata V, Grassi R et al. Radiofrequency ablation and microwave ablation in liver tumors: an update[J]. The Oncologist, 24, e990-e1005(2019).
[3] Yun S H, Kwok S J J. Light in diagnosis, therapy and surgery[J]. Nature Biomedical Engineering, 1, 0008(2017).
[4] Boppart S A, Brown J Q, Farah C S et al. Label-free optical imaging technologies for rapid translation and use during intraoperative surgical and tumor margin assessment[J]. Journal of Biomedical Optics, 23, 021104(2017).
[5] Zhang Z X. Biomedical photonics: diagnosis, therapy and monitoring[M](2017).
[6] El Ahmadieh T Y, Aoun S G, Lega B C. Autofluorescence technology in glioblastoma resection: evolution of new tool and approach[J]. World Neurosurgery, 126, 139-141(2019).
[7] Jermyn M, Mok K, Mercier J et al. Intraoperative brain cancer detection with Raman spectroscopy in humans[J]. Science Translational Medicine, 7, 274ra19(2015).
[8] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[9] Xu M H, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 77, 041101(2006).
[10] Walter S M D, Susanne S M D, Simon W M D et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence[J]. Neurosurgery, 42, 518-526(1998).
[11] Shinoda J, Yano H, Yoshimura S I et al. Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium. Technical note[J]. Journal of Neurosurgery, 99, 597-603(2003).
[12] Hu Z H, Fang C, Li B et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows[J]. Nature Biomedical Engineering, 4, 259-271(2020).
[13] Valdes P A, Kim A, Brantsch M et al. δ-aminolevulinic acid-induced protoporphyrin IX concentration correlates with histopathologic markers of malignancy in human gliomas: the need for quantitative fluorescence-guided resection to identify regions of increasing malignancy[J]. Neuro-Oncology, 13, 846-856(2011).
[15] Alston L, Mahieu-Williame L, Hebert M et al. Spectral complexity of 5-ALA induced PpIX fluorescence in guided surgery: a clinical study towards the discrimination of healthy tissue and margin boundaries in high and low grade gliomas[J]. Biomedical Optics Express, 10, 2478-2492(2019).
[16] Haj-Hosseini N, Richter J, Andersson-Engels S et al. Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid[J]. Lasers in Surgery and Medicine, 42, 9-14(2010).
[17] Leclerc P, Ray C, Mahieu-Williame L et al. Machine learning-based prediction of glioma margin from 5-ALA induced PpIX fluorescence spectroscopy[J]. Scientific Reports, 10, 1462(2020).
[18] Butte P V, Pikul B K, Hever A et al. Diagnosis of meningioma by time-resolved fluorescence spectroscopy[J]. Journal of Biomedical Optics, 10, 064026(2005).
[19] Zhu M Y, Chen F, Liu J et al. Ex vivo classification of spinal cord tumors using autofluorescence spectroscopy with immunohistochemical indexes[J]. Biomedical Optics Express, 9, 4401-4412(2018).
[20] Zhu M Y, Chang W, Jing L K et al. Dual-modality optical diagnosis for precise in vivo identification of tumors in neurosurgery[J]. Theranostics, 9, 2827-2842(2019).
[21] Li Y P, Deng L Y, Yang X H et al. Early diagnosis of gastric cancer based on deep learning combined with the spectral-spatial classification method[J]. Biomedical Optics Express, 10, 4999-5014(2019).
[22] Lyng F M, Traynor D, Nguyen T N Q et al. Discrimination of breast cancer from benign tumours using Raman spectroscopy[J]. PLoS One, 14, e0212376(2019).
[23] Mehta K, Atak A, Sahu A et al. An early investigative serum Raman spectroscopy study of meningioma[J]. The Analyst, 143, 1916-1923(2018).
[24] Fallahzadeh O, Dehghani-Bidgoli Z, Assarian M. Raman spectral feature selection using ant colony optimization for breast cancer diagnosis[J]. Lasers in Medical Science, 33, 1799-1806(2018).
[25] Bovenkamp D, Sentosa R, Rank E et al. Combination of high-resolution optical coherence tomography and Raman spectroscopy for improved staging and grading in bladder cancer[J]. Applied Sciences, 8, 2371(2018).
[26] Robichaux-Viehoever A, Kanter E, Shappell H et al. Characterization of Raman spectra measured in vivo for the detection of cervical dysplasia[J]. Applied Spectroscopy, 61, 986-993(2007).
[27] Ji M, Lewis S, Camelo-Piragua S et al. Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy[J]. Science translational medicine, 7, 309ra163(2015).
[28] Orringer D A, Pandian B, Niknafs Y S et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy[J]. Nature Biomedical Engineering, 1, 0027(2017).
[29] Hollon T C, Pandian B, Adapa A R et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks[J]. Nature medicine, 26, 52-58(2020).
[30] Tsai M T, Lee H C, Lu C W et al. Delineation of an oral cancer lesion with swept-source optical coherence tomography[J]. Journal of Biomedical Optics, 13, 044012(2008).
[31] Zysk A M, Boppart S A. Computational methods for analysis of human breast tumor tissue in optical coherence tomography images[J]. Journal of Biomedical Optics, 11, 054015(2006).
[32] Lingley-Papadopoulos C A, Loew M H, Manyak M J et al. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis[J]. Journal of Biomedical Optics, 13, 024003(2008).
[33] Wan S H, Lee H C, Huang X L et al. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy[J]. Medical Image Analysis, 38, 104-116(2017).
[34] Lenz M, Krug R, Dillmann C et al. Automated differentiation between meningioma and healthy brain tissue based on optical coherence tomography ex vivo images using texture features[J]. Journal of Biomedical Optics, 23, 071205(2018).
[35] Kut C, Chaichana K L, Xi J et al. Detection of human brain cancer infiltration ex vivo and in vivo using quantitative optical coherence tomography[J]. Science Translational Medicine, 7, 292ra100(2015).
[36] Yuan W, Kut C, Liang W et al. Robust and fast characterization of OCT-based optical attenuation using a novel frequency-domain algorithm for brain cancer detection[J]. Scientific Reports, 7, 44909(2017).
[37] Turani Z, Fatemizadeh E, Blumetti T et al. Optical radiomic signatures derived from optical coherence tomography images improve identification of melanoma[J]. Cancer Research, 79, 2021-2030(2019).
[38] Almasian M, Wilk L S, Bloemen P R et al. Pilot feasibility study of in vivo intraoperative quantitative optical coherence tomography of human brain tissue during glioma resection[J]. Journal of Biophotonics, 12, e201900037(2019).
[39] Juarez-Chambi R M, Kut C, Rico-Jimenez J J et al. AI-assisted in situ detection of human glioma infiltration using a novel computational method for optical coherence tomography[J]. Clinical Cancer Research, 25, 6329-6338(2019).
[40] Moiseev A, Snopova L, Kuznetsov S et al. Pixel classification method in optical coherence tomography for tumor segmentation and its complementary usage with OCT microangiography[J]. Journal of Biophotonics, 11, e201700072(2018).
[41] Triki A R, Blaschko M B, Jung Y M et al. Intraoperative margin assessment of human breast tissue in optical coherence tomography images using deep neural networks[J]. Computerized Medical Imaging and Graphics, 69, 21-32(2018).
[42] Ma Y T, Xu T, Huang X L et al. Computer-aided diagnosis of label-free 3-D optical coherence microscopy images of human cervical tissue[J]. IEEE Transactions on Biomedical Engineering, 66, 2447-2456(2019).
[43] Zeng Y F, Xu S Q, Chapman W C et al. Real-time colorectal cancer diagnosis using PR-OCT with deep learning[C]. //Optical Coherence Tomography 2020, April 20-23, 2020, Washington, D.C., United States, OW2E, 5(2020).
[44] Yu Q, Huang S S, Wu Z Y et al. Label-free visualization of early cancer hepatic micrometastasis and intraoperative image-guided surgery by photoacoustic imaging[J]. Journal of Nuclear Medicine, 61, 1079-1085(2020).
[45] de la Zerda A, Kircher M F, Jokerst J V et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle[J]. Proceedings of SPIE, 8581, 85810G(2013).
[46] Liu Y J, Yang Y P, Sun M J et al. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer[J]. Chemical Science, 8, 2710-2716(2017).
[47] Liu Y, Liu H, Yan H et al. Aggregation-induced absorption enhancement for deep near-infrared II photoacoustic imaging of brain gliomas in vivo[J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 6, 1801615(2019).
[48] Zhang J Y, Chen B, Zhou M et al. Photoacoustic image classification and segmentation of breast cancer: a feasibility study[J]. IEEE Access, 7, 5457-5466(2019).
[49] Rajanna A R, Ptucha R, Sinha S et al. Prostate cancer detection using photoacoustic imaging and deep learning[J]. Electronic Imaging, 2016, 1-6(2016).
[50] Moustakidis S, Omar M, Aguirre J et al. Fully automated identification of skin morphology in raster-scan optoacoustic mesoscopy using artificial intelligence[J]. Medical Physics, 46, 4046-4056(2019).
[51] Jnawali K, Chinni B, Dogra V et al. Automatic cancer tissue detection using multispectral photoacoustic imaging[J]. International Journal of Computer Assisted Radiology and Surgery, 15, 309-320(2020).
[52] Sakimoto T, Rosenblatt M I, Azar D T. Laser eye surgery for refractive errors[J]. The Lancet, 367, 1432-1447(2006).
[53] Palanker D V, Blumenkranz M S, Andersen D et al. Femtosecond laser-assisted cataract surgery with integrated optical coherence tomography[J]. Science Translational Medicine, 2, 58ra85(2010).
[54] Karabag R Y, Parlak M, Cetin G et al. Retinal tears and rhegmatogenous retinal detachment after intravitreal injections: its prevalence and case reports[J]. Digital Journal of Ophthalmology, 21, 8-10(2015).
[55] Tanzi E L, Lupton J R, Alster T S. Lasers in dermatology: four decades of progress[J]. Journal of the American Academy of Dermatology, 49, 1-34(2003).
[56] Mcguff P E, Bushnell D, Soroff H S et al. Studies of the surgical applications of laser (light amplification by stimulated emission of radiation)[J]. Surgical Forum, 14, 143-145(1963).
[57] Bown S G. Phototherapy in tumors[J]. World Journal of Surgery, 7, 700-709(1983).
[58] Schena E, Saccomandi P, Fong Y. Laser ablation for cancer: past, present and future[J]. Journal of Functional Biomaterials, 8, E19(2017).
[59] Bozinov O, Yang Y, Oertel M F et al. Laser interstitial thermal therapy in gliomas[J]. Cancer Letters, 474, 151-157(2020).
[60] Salem U, Kumar V A, Madewell J E et al. Neurosurgical applications of MRI guided laser interstitial thermal therapy (LITT)[J]. Cancer Imaging, 19, 65(2019).
[62] Malek R S, Barrett D M, Kuntzman R S. High-power potassium-titanyl-phosphate (KTP/532) laser vaporization prostatectomy: 24 hours later[J]. Urology, 51, 254-256(1998).
[63] Sofer M, Watterson J D, Wollin T A et al. Holmium∶YAG laser lithotripsy for upper urinary tract calculi in 598 patients[J]. The Journal of Urology, 167, 31-34(2002).
[64] Liao H, Noguchi M, Maruyama T et al. Automatic focusing and robotic scanning mechanism for precision laser ablation in neurosurgery[C]. //2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 18-22, 2010, Taipei, Taiwan, China., 325-330(2010).
[66] Ross W A, Hill W M, Hoang K B et al. Automating neurosurgical tumor resection surgery: volumetric laser ablation of cadaveric porcine brain with integrated surface mapping[J]. Lasers in Surgery and Medicine, 50, 1017-1024(2018).
[67] Su B Q, Tang J, Liao H. Automatic laser ablation control algorithm for an novel endoscopic laser ablation end effector for precision neurosurgery[C]. //2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 28-October 2, 2015, Hamburg, Germany., 4362-4367(2015).
[69] Franz P, Wang X M, Zhu H et al. Detection of blackbody radiation during fiber guided laser-tissue vaporization[J]. Biomedical Optics Express, 11, 791-800(2020).
[70] Kok H P, Kotte A N T J, Crezee J. Planning, optimisation and evaluation of hyperthermia treatments[J]. International Journal of Hyperthermia, 33, 593-607(2017).
[71] Pham N T, Lee S L, Park S et al. Real-time temperature monitoring with fiber Bragg grating sensor during diffuser-assisted laser-induced interstitial thermotherapy[J]. Journal of Biomedical Optics, 22, 045008(2017).
[73] Guo S, Wei S, Lee S et al. Intraoperative speckle variance optical coherence tomography for tissue temperature monitoring during cutaneous laser therapy[J]. IEEE Journal of Translational Engineering in Health and Medicine, 7, 1800608(2019).
[74] Maltais-Tariant R, Boudoux C, Uribe-Patarroyo N. Real-time co-localized OCT surveillance of laser therapy using motion corrected speckle decorrelation[J]. Biomedical Optics Express, 11, 2925-2950(2020).
[75] Periyasamy V, Özsoy Ç, Reiss M et al. In vivo optoacoustic monitoring of percutaneous laser ablation of tumors in a murine breast cancer model[J]. Optics Letters, 45, 2006-2009(2020).
[76] Nestor M S, Gold M H, Kauvar A N et al. The use of photodynamic therapy in dermatology: results of a consensus conference[J]. Journal of Drugs in Dermatology, 5, 140-154(2006).
[77] Cairnduff F, Stringer M R, Hudson E J et al. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer[J]. British Journal of Cancer, 69, 605-608(1994).
[78] Li L B, Luo R C, Liao W J et al. Clinical study of photofrin photodynamic therapy for the treatment of relapse nasopharyngeal carcinoma[J]. Photodiagnosis and Photodynamic Therapy, 3, 266-271(2006).
[79] Biel M. Advances in photodynamic therapy for the treatment of head and neck cancers[J]. Lasers in Surgery and Medicine, 38, 349-355(2006).
[80] Wolfsen H C. Carpe luz: seize the light: endoprevention of esophageal adenocarcinoma when using photodynamic therapy with porfimer sodium[J]. Gastrointestinal Endoscopy, 62, 499-503(2005).
[81] Wolfsen H C, Hemminger L L, Wallace M B et al. Clinical experience of patients undergoing photodynamic therapy for Barrett’s dysplasia or cancer[J]. Alimentary Pharmacology & Therapeutics, 20, 1125-1131(2004).
[82] Pereira S P, Ayaru L, Rogowska A et al. Photodynamic therapy of malignant biliary strictures using meso-tetrahydroxyphenylchlorin[J]. European Journal of Gastroenterology & Hepatology, 19, 479-485(2007).
[83] Bown S G, Rogowska A Z, Whitelaw D E et al. Photodynamic therapy for cancer of the pancreas[J]. Gut, 50, 549-557(2002).
[84] Mahmoudi K, Garvey K L, Bouras A et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas[J]. Journal of Neuro-Oncology, 141, 595-607(2019).
[85] Inoue K. 5-aminolevulinic acid-mediated photodynamic therapy for bladder cancer[J]. International Journal of Urology, 24, 97-101(2017).
[86] Agostinis P, Berg K, Cengel K A et al. Photodynamic therapy of cancer: an update[J]. CA: a Cancer Journal for Clinicians, 61, 250-281(2011).
[87] Cruz P M, Mo H, McConathy W J et al. The role of cholesterol metabolism and cholesterol transport in carcinogenesis: a review of scientific findings, relevant to future cancer therapeutics[J]. Frontiers in Pharmacology, 4, 119(2013).
[88] Kwiatkowski S, Knap B, Przystupski D et al. Photodynamic therapy-mechanisms, photosensitizers and combinations[J]. Biomedicine & Pharmacotherapy, 106, 1098-1107(2018).
[90] Kim Y R, Kim S, Choi J W et al. Bioluminescence-activated deep-tissue photodynamic therapy of cancer[J]. Theranostics, 5, 805-817(2015).
[91] Starkey J R, Rebane A K, Drobizhev M A et al. New two-photon activated photodynamic therapy sensitizers induce xenograft tumor regressions after near-IR laser treatment through the body of the host mouse[J]. Clinical Cancer Research, 14, 6564-6573(2008).
[92] Hirsch L R, Stafford R J, Bankson J A et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 13549-13554(2003).
[93] Huang X H, El-Sayed I H, Qian W et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods[J]. Journal of the American Chemical Society, 128, 2115-2120(2006).
[94] Ali M R K, Wu Y, El-Sayed M A. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application[J]. The Journal of Physical Chemistry C, 123, 15375-15393(2019).
[95] Rastinehad A R, Anastos H, Wajswol E et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study[J]. Proceedings of the National Academy of Sciences of the United States of America, 116, 18590-18596(2019).
[96] Hu Y Y, Chi C W, Wang S H et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer[J]. Advanced Materials, 29, 1700448(2017).
[97] Wang S J, Ma X Q, Hong X H et al. Adjuvant photothermal therapy inhibits local recurrences after breast-conserving surgery with little skin damage[J]. ACS Nano, 12, 662-670(2018).
[98] Liu S Y, Liang Z S, Gao F et al. In vitro photothermal study of gold nanoshells functionalized with small targeting peptides to liver cancer cells[J]. Journal of Materials Science, 21, 665-674(2010).
[99] Ali M R K, Rahman M A, Wu Y et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 114, E3110-E3118(2017).
[100] Lim H W, Silpa-Archa N, Amadi U et al. Phototherapy in dermatology: a call for action[J]. Journal of the American Academy of Dermatology, 72, 1078-1080(2015).
[101] Johnson-Huang L M, Suárez-Fariñas M, Sullivan-Whalen M et al. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques[J]. Journal of Investigative Dermatology, 130, 2654-2663(2010).
[102] Maisels M J, McDonagh A F. Phototherapy for neonatal jaundice[J]. The New England Journal of Medicine, 358, 920-928(2008).
[103] Lam R W, Levitt A J, Levitan R D et al. Efficacy of bright light treatment, fluoxetine, and the combination in patients with nonseasonal major depressive disorder: a randomized clinical trial[J]. JAMA Psychiatry, 73, 56-63(2016).
[104] Golden R N, Gaynes B N, Ekstrom R D et al. The efficacy of light therapy in the treatment of mood disorders: a review and meta-analysis of the evidence[J]. The American Journal of Psychiatry, 162, 656-662(2005).
[107] Boyden E S, Zhang F, Bamberg E et al. Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nature Neuroscience, 8, 1263-1268(2005).
[108] Gradinaru V, Mogri M, Thompson K R et al. Optical deconstruction of parkinsonian neural circuitry[J]. Science, 324, 354-359(2009).
[109] Chow B Y, Boyden E S. Optogenetics and translational medicine[J]. Science Translational Medicine, 5, 177ps5(2013).
[110] Kramer R H, Mourot A, Adesnik H. Optogenetic pharmacology for control of native neuronal signaling proteins[J]. Nature Neuroscience, 16, 816-823(2013).
[111] Fan Y W, Ma L F, Chang W et al. Optimized optical coherence tomography imaging with hough transform-based fixed-pattern noise reduction[J]. IEEE Access, 6, 32087-32096(2018).
[112] Zong W J, Wu R L, Li M L et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely-behaving mice[J]. Nature Methods, 14, 713-719(2017).
[113] Li L, Zhu L R, Ma C et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution[J]. Nature Biomedical Engineering, 1, 0071(2017).
[114] Zhou T, Ando T, Nakagawa K et al. Localizing fluorophore (centroid) inside a scattering medium by depth perturbation[J]. Journal of Biomedical Optics, 20, 017003(2015).
[115] Zhang N, Chen T Y, Huo T C et al. Ultrahigh resolution endoscopic spectral domain optical coherence tomography with a tiny rotary probe driven by a hollow ultrasonic motor[J]. Proceedings of SPIE, 8571, 85713A(2013).
[116] Iftimia N, Yélamos O, Chen C J et al. Handheld optical coherence tomography-reflectance confocal microscopy probe for detection of basal cell carcinoma and delineation of margins[J]. Journal of Biomedical Optics, 22, 076006(2017).
[117] Fichera P. Bringing the light inside the body to perform better surgery[J]. Science Robotics, 6, eabf1523(2021).
[118] Giataganas P, Hughes M, Yang G Z. Force adaptive robotically assisted endomicroscopy for intraoperative tumour identification[J]. International Journal of Computer Assisted Radiology and Surgery, 10, 825-832(2015).
[119] Su B Q, Shi Z, Liao H. Micro laser ablation system integrated with image sensor for minimally invasive surgery[C]. //2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, September 14-18, 2014, Chicago, IL, USA., 2043-2048(2014).
[120] Zhang B Y, Hu C Q, Yang P H et al. Design and modularization of multi-DoF soft robotic actuators[J]. IEEE Robotics and Automation Letters, 4, 2645-2652(2019).
[121] York P A, Peña R, Kent D et al. Microrobotic laser steering for minimally invasive surgery[J]. Science Robotics, 6, eabd5476(2021).
[122] Zong W J, Wu R L, Chen S Y et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nature Methods, 18, 46-49(2021).
[123] Hu C Q, Chang W, Li Y X et al. A novel OCT image-guided laser automatic ablation method based on non-common optical path structure[M]. //Shiraishi Y, Sakuma I, Naruse K, et al. 11th Asian-Pacific conference on medical and biological engineering. IFMBE proceedings, 82, 215-222(2021).
[124] Qiu L, Pleskow D K, Chuttani R et al. Multispectral scanning during endoscopy guides biopsy of dysplasia in Barrett’s esophagus[J]. Nature Medicine, 16, 603-606(2010).
[125] Zuo S Y, Yang G Z. Endomicroscopy for computer and robot assisted intervention[J]. IEEE Reviews in Biomedical Engineering, 10, 12-25(2017).
[126] Wang H B, Ping Z Y, Fan Y W et al. A novel surface-scanning device for intraoperative tumor identification and therapy[J]. IEEE Access, 7, 96392-96403(2019).
[127] Ping Z Y, Wang H B, Chen X et al. Modular robotic scanning device for real-time gastric endomicroscopy[J]. Annals of Biomedical Engineering, 47, 563-575(2019).
[128] Kurilchik S, Gacci M, Cicchi R et al. Advanced multimodal laser imaging tool for urothelial carcinoma diagnosis (AMPLITUDE)[J]. Journal of Physics, 2, 021001(2020).
[129] Zhang L, Ye M L, Giataganas P et al. From macro to micro: autonomous multiscale image fusion for robotic surgery[J]. IEEE Robotics & Automation Magazine, 24, 63-72(2017).
[131] Lazarides A L, Whitley M J, Strasfeld D B et al. A fluorescence-guided laser ablation system for removal of residual cancer in a mouse model of soft tissue sarcoma[J]. Theranostics, 6, 155-166(2016).
[132] Fan Y W, Sun Y, Chang W et al. Bioluminescence imaging and two-photon microscopy guided laser ablation of GBM decreases tumor burden[J]. Theranostics, 8, 4072-4085(2018).
[133] Fan Y W, Zhang B Y, Chang W et al. A novel integration of spectral-domain optical-coherence-tomography and laser-ablation system for precision treatment[J]. International Journal of Computer Assisted Radiology and Surgery, 13, 411-423(2018).
[134] Chang W, Fan Y W, Zhang X R et al. An intelligent theranostics method using optical coherence tomography guided automatic laser ablation for neurosurgery[C]. //2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), July 18-21, 2018, Honolulu, HI, USA., 3224-3227(2018).
[135] Katta N, McElroy A B, Estrada A D et al. Optical coherence tomography image-guided smart laser knife for surgery[J]. Lasers in Surgery and Medicine, 50, 202-212(2018).
[136] Yuan W, Chen D F, Sarabia-Estrada R et al. Theranostic OCT microneedle for fast ultrahigh-resolution deep-brain imaging and efficient laser ablation in vivo[J]. Science Advances, 6, eaaz9664(2020).
[137] Lee S, Wei S W, Guo S J et al. Selective retina therapy monitoring by speckle variance optical coherence tomography for dosimetry control[J]. Journal of Biomedical Optics, 25, 026001(2020).
[138] Gao S, Zhang L W, Wang G H et al. Hybrid graphene/Au activatable theranostic agent for multimodalities imaging guided enhanced photothermal therapy[J]. Biomaterials, 79, 36-45(2016).
[139] Peng Y, Liu Y, Lu X J et al. Ag-hybridized plasmonic Au-triangular nanoplates: highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy[J]. Journal of Materials Chemistry B, 6, 2813-2820(2018).
[140] Chechetka S A, Yu Y, Zhen X et al. Light-driven liquid metal nanotransformers for biomedical theranostics[J]. Nature Communications, 8, 15432(2017).
[141] Ji X Y, Ge L L, Liu C et al. Capturing functional two-dimensional nanosheets from sandwich-structure vermiculite for cancer theranostics[J]. Nature Communications, 12, 1124(2021).
[142] Wang Z Y, Ju Y M, Ali Z et al. Near-infrared light and tumor microenvironment dual responsive size-switchable nanocapsules for multimodal tumor theranostics[J]. Nature Communications, 10, 4418(2019).
[143] Lee H, Lee Y, Song C et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment[J]. Nature Communications, 6, 10059(2015).
Get Citation
Copy Citation Text
Yangxi Li, Chengquan Hu, Longfei Ma, Xinran Zhang, Hongen Liao. Research Progress in Intelligent and Precise Optical Diagnosis and Treatment Technology[J]. Chinese Journal of Lasers, 2021, 48(15): 1507002
Category: biomedical photonics and laser medicine
Received: Mar. 16, 2021
Accepted: May. 20, 2021
Published Online: Aug. 5, 2021
The Author Email: Liao Hongen (liao@tsinghua.edu.cn)