Journal of Semiconductors, Volume. 40, Issue 1, 011805(2019)

Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3

Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, and Youdou Zheng
Author Affiliations
  • Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
  • show less
    References(58)

    [1] R Roy, V G Hill, E F Osborn et al. Polymorphism of Ga2O3 and the system Ga2O3–H2O. J Am Chem Soc, 74, 719(1952).

    [2] H H Tippins. Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys Rev, 140, A316(1965).

    [3] H He, R Orlando, M A Blanco et al. First-principles study of structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 74, 195123(2006).

    [4] M Orita, H Ohta, M Hirano et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl Phys Lett, 77, 4166(2000).

    [5] T Onuma, S Fujioka, T Yamaguchi et al. Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl Phys Lett, 103, 041910(2013).

    [6] T Oshima, T Okuno, N Arai et al. Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl Phys Express, 1, 011202(2008).

    [7] E G Víllora, K Shimamura, K Kitamura et al. Epitaxial relationship between wurtzite GaN and β-Ga2O3. Appl Phys Lett, 90, 234102(2007).

    [8] E G Víllora, S Arjoca, K Shimamura et al. β-Ga2O3 and single-crystal phosphors for high-brightness white LEDs and LDs, and β-Ga2O3 potential for next generation of power devices. Proc SPIE, 8987, 89871U(2014).

    [9] K Sasaki, A Kuramata, T Masui et al. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl Phys Express, 5, 035502(2012).

    [10] M Higashiwaki, K Sasaki, A Kuramata et al. Gallium oxide (Ga2O3) metal–semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl Phys Lett, 100, 013504(2012).

    [11] M Higashiwaki, K Sasaki, T Kamimura et al. Depletion-mode Ga2O3 metal–oxide–semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl Phys Lett, 103, 123511(2013).

    [12] Z Galazka, K Irmscher, R Uecker et al. On the bulk β-Ga2O3 single crystals grown by czochralski method. J Cryst Growth, 404, 184(2014).

    [13] N Ueda, H Hosono, R Waseda et al. Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl Phys Lett, 70, 3561(1997).

    [14] E G Villora, K Shimamura, Y Yoshikawa et al. Large-size β-Ga2O3 single crystals and wafers. J Cryst Growth, 270, 420(2004).

    [15] A Kuramata, K Koshi, S Watanabe et al. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn J Appl Phys, 55, 1202A(2016).

    [16] T Oshima, T Okuno, S Fujita. Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn J Appl Phys, 46, 7217(2007).

    [17] G Wagner, M Baldini, D Gogova et al. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys Status Solidi A, 211, 27(2014).

    [18] K Fujito, S Kubo, H Nagaoka et al. Bulk GaN crystals grown by HVPE. J Cryst Growth, 311, 3011(2009).

    [19] R Masuda, T Fujii, N Yoshii et al. Step-flow growth of homoepitaxial ZnO thin layers by halide vapor phase epitaxy using ZnCl2 and H2O source gases. J Cryst Growth, 312, 2324(2010).

    [20] Y Kumagai, Y Kubota, T Nagashima et al. Preparation of a freestanding AlN substrate from a thick AlN layer grown by hydride vapor phase epitaxy on a bulk AlN substrate prepared by physical vapor transport. Appl Phys Express, 5, 055504(2012).

    [21] K Nomura, K Goto, R Togashi et al. Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J Cryst Growth, 405, 19(2014).

    [22] Y Oshima, E G Vίllora, K Shimamura. Quasi-heteroepitaxial growth of β-Ga2O3 on off-angled sapphire (0001) substrates by halide vapor phase epitaxy. J Cryst Growth, 410, 53(2015).

    [23] N Suzuki, S Ohira, M Tanaka et al. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystals. Phys Status Solidi C, 4, 2310(2007).

    [24] M Slomski, N Blumenschein, P P Paskov et al. Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J Appl Phys, 121, 235104(2017).

    [25] T Harwig, G J Wubs, G J Dirksen. Electrical properties of β-Ga2O3 single crystals. Solid State Commun, 18, 1223(1976).

    [26] T Matsumoto, M Aoki, A Kinoshita et al. Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn J Appl Phys, 13, 1578(1974).

    [27] E G Víllora, K Shimamura, K Kitamura et al. Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3. Appl Phys Lett, 88, 031105(2006).

    [28] M Y Tsai, O Bierwagen, M E White et al. β-Ga2O3 growth by plasma-assisted molecular beam epitaxy. J Vac Sci Technol, 28, 354(2010).

    [29] V Gottschalch, K Mergenthaler, G Wagner et al. Growth of β-Ga2O3 on Al2O3 and GaAs using metal-organic vapor-phase epitaxy. Phys Stat Solidi A, 206, 243(2009).

    [30] W Mi, J Ma, Z Zhu et al. Epitaxial growth of Ga2O3 thin films on MgO (110) substrate by metal–organic chemical vapor deposition. J Cryst Growth, 354, 93(2012).

    [31] F B Zhang, K Saito, T Tanaka et al. Structural and optical properties of Ga2O3 films on sapphire substrates by pulsed laser deposition. J Cryst Growth, 387, 96(2014).

    [32] Z N Xiong, X Q Xiu, Y W Li et al. Growth of β-Ga2O3 films on sapphire by HVPE. Chin Phys Lett, 35, 058101(2018).

    [33] M Orita, H Hiramatsu, H Ohta et al. Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films, 411, 134(2002).

    [34] D Shinohara, S Fujita. Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn J Appl Phys, 47, 7311(2008).

    [35] T Kawaharamura, G T Dang, M Furuta. Successful growth of conductive highly crystalline Sn-doped α-Ga2O3 thin films by fine-channel mist chemical vapor deposition. Jpn J Appl Phys, 51, 040207(2012).

    [36] K Akaiwa, S Fujita. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn J Appl Phys, 51, 070203(2012).

    [37] S Fujita, K Kaneko. Epitaxial growth of corundum-structured wide band gap III-oxide semiconductor thin films. J Cryst Growth, 401, 588(2014).

    [38] Y Oshima, E G Víllora, K Shimamura. Halide vapor phase epitaxy of twin-free α-Ga2O3 on sapphire (0001) substrates. Appl Phys Express, 8, 055501(2015).

    [39] Y Oshima, E G Víllora, Y Matsushita et al. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy. J Appl Phys, 118, 085301(2015).

    [40] Y Yao, S Okur, A M Lyle et al. Growth and characterization of α-, β-, and ε-phases of Ga2O3 using MOCVD and HVPE techniques. Mater Res Lett, 6, 268(2018).

    [41] M Mohamed, K Irmscher, C Janowitz et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 101, 132106(2012).

    [42] S Oh, G Yang, J Kim. Electrical characteristics of vertical Ni/β-Ga2O3 schottky barrier diodes at high temperatures. ECS J Solid State Sci Technol, 6, Q3022(2017).

    [43] J Yang, S Ahn, F Ren et al. High reverse breakdown voltage Schottky rectifiers without edge termination on Ga2O3. Appl Phys Lett, 110, 192101(2017).

    [44] M Higashiwaki, K Konishi, K Sasaki et al. Temperature-dependent capacitance–voltage and current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl Phys Lett, 108, 133503(2016).

    [45] H Murakami, K Nomura, K Goto et al. Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl Phys Express, 8, 015503(2014).

    [46] Z Z Hu, H Zhou, Q Feng et al. Field-plated lateral β- Ga2O3 Schottky barrier diode with high reverse blocking voltage of more than 3 kV and high DC power figure-of-merit of 500 MW/cm2. IEEE Electron Device Lett, 39, 1564(2018).

    [47] M Higashiwaki, K Sasaki, H Murakami et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 31, 034001(2016).

    [48] K Konishi, K Goto, H Murakami et al. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl Phys Lett, 110, 103506(2017).

    [49] K Shimamura, E G Víllora, K Domen et al. Epitaxial growth of GaN on (100) β-Ga2O3 substrates by metalorganic vapor phase epitaxy. Jpn J Appl Phys, 44, L7(2004).

    [50] E G Víllora, K Shimamura, K Aoki et al. Molecular beam epitaxy of c-plane wurtzite GaN on nitridized a-plane β-Ga2O3. Thin Solid Films, 500, 209(2006).

    [51] Z L Xie, R Zhang, C T Xia et al. Demonstration of GaN/InGaN light emitting diodes on (100) beta-Ga2O3 substrates by metalorganic chemical vapour deposition. Chin Phys Lett, 25, 2185(2008).

    [52] I A Ajia, Y Yamashita, K Lorenz et al. GaN/AlGaN multiple quantum wells grown on transparent and conductive (-201)-oriented β-Ga2O3 substrate for UV vertical light emitting devices. Appl Phys Lett, 113, 082102(2018).

    [53] V M Krymov, S I Stepanov, N K Zhumashev et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mech, 22, 59(2015).

    [54] S Ito, K Takeda, K Nagata et al. Growth of GaN and AlGaN on (100) β-Ga2O3 substrates. Phys Status Solidi C, 9, 519(2012).

    [55] H J Lee, T I Shin, D H Yoon. Influence of NH3 gas for GaN epilayer on β-Ga2O3 substrate by nitridation. Surf Coat Tech, 202, 5497(2008).

    [56] K Kachel, M Korytov, D Gogova et al. A new approach to free-standing GaN using β-Ga2O3 as a substrate. CrystEngComm, 14, 8536(2012).

    [57] V I Nikolaev, A I Pechnikov, V N Maslov et al. GaN growth on β-Ga2O3 substrates by HVPE. Mater Phys Mechan, 22, 59(2015).

    [58] Y W Li, X Q Xiu, Z N Xiong et al. Single crystal GaN layer converted from β-Ga2O3 films and its application for free-Standing GaN. CrystEngComm(2019).

    Tools

    Get Citation

    Copy Citation Text

    Xiangqian Xiu, Liying Zhang, Yuewen Li, Zening Xiong, Rong Zhang, Youdou Zheng. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. Journal of Semiconductors, 2019, 40(1): 011805

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Reviews

    Received: Sep. 27, 2018

    Accepted: --

    Published Online: Sep. 18, 2021

    The Author Email:

    DOI:10.1088/1674-4926/40/1/011805

    Topics