Journal of Infrared and Millimeter Waves, Volume. 42, Issue 4, 450(2023)
Effect of Be doping in active regions on the performance of 1.3 μm InAs quantum dot lasers
[1] Wang Z, Qi W, Feng Q et al. InAs/GaAs quantum dot single-section mode-locked lasers directly grown on Si (001) with optical self-injection feedback[J]. Optics Express, 29, 674-683(2020).
[2] Liu A Y, Srinivasan S, Norman J et al. Quantum dot lasers for silicon photonics [Invited][J]. Photonics Research, 3, 050000B1(2015).
[3] Yang J, Liu Z, Jurczak P et al. All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates[J]. Journal of Physics D Applied Physics, 54, 035103(2020).
[4] Jung D, Norman J C, Kennedy M J et al. High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si[J]. Applied Physics Letters, 111, 122107(2017).
[5] Yuan Y, Su X B, Yang C A et al. Molecular beam epitaxial growth of InAs quantum dots on GaAs for high characteristics temperature lasers[J]. Journal of Infrared and Millimeter Waves, 39, 667(2020).
[6] Kageyama T, Nishi K, Yamaguchi M et al. Extremely High Temperature (220°C) Continuous-Wave Operation of 1300-nm-range Quantum-Dot Lasers[C](2011).
[7] Ruiz-Marin N, Reyes D F, Stanojevic L et al. Effect of the AlAs capping layer thickness on the structure of InAs/GaAs QD[J]. Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials, 573(2022).
[8] Qin L, Xu B, Xu X S. Enhancement of excited-state emission of InAs/GaAs quantum dots with large-period photonic crystal[J]. Journal of Infrared and Millimeter Waves, 38, 559-565(2019).
[9] Wan Y, Inoue D, Jung D et al. Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability[J]. Photonics Research, 6, 776(2018).
[10] Alexander R R, Agarwal H, Groom K M et al. Systematic study of the effects of modulation p-doping on 1.3-μm quantum-dot lasers[J]. IEEE Journal of Quantum Electronics, 43, 1129-1139(2007).
[11] Qi W, Zhang J, Wang J H et al. Phosphorus-free 151 μm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform[J]. Optics Letters, 45, 2042-2045(2020).
[12] Mi Z, Bhattacharya P, Yang J et al. Room-temperature self-organised In0.5Ga0.5As quantum dot laser on silicon[J]. Electronics Letters, 41, 742-744(2005).
[13] Chen S, Chen S, Li W et al. Electrically pumped continuous-wave III-V quantum dot lasers on silicon[J]. Nature Photonics, 10, 307-311(2016).
[14] Ray S K, Choi T L, Groom K M et al. High-Power 1.3-μm Quantum-Dot Superluminescent Light-Emitting Diode Grown by Molecular Beam Epitaxy[J]. Photonics Technology Letters IEEE, 19, 109-111(2007).
[15] Mukai K, Ohtsuka N, Sugawara M et al. Self-Formed In0.5Ga0.5As Quantum Dots on GaAs Substrates Emitting at 1.3μm[J]. Japanese Journal of Applied Physics, 33, L1710-L1712(1994).
[16] Stephan D, Bhattacharyya J, Huo Y H et al. Inter-sublevel dynamics in single InAs/GaAs quantum dots induced by strong terahertz excitation[J]. Applied Physics Letters, 108, 082107.1-082107.4(2016).
[17] Gong Q, Notzel R, Hamhuis G J et al. Leveling and rebuilding: An approach to improve the uniformity of (In,Ga)As quantum dots[J]. Applied Physics Letters, 81, 1887-1889(2002).
[18] Joyce P B, Krzyzewski T J, Bell G R et al. Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy[J]. Physical Review B Condensed Matter, 62, 10891-10895(2000).
[19] Wang T, Lee A, Tutu F et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates[J]. Applied Physics Letters, 100, 4600(2012).
[20] Salhi A, Fortunato L, Martiradonna L et al. Enhanced modal gain of multilayer InAs/InGaAs/GaAs quantum dot lasers emitting at 1300 nm[J]. Journal of Applied Physics, 100, 1915(2006).
[21] Cao Q, Yoon S F, Liu C Y et al. Effects of rapid thermal annealing on optical properties of p-doped and undoped InAs/InGaAs dots-in-a-well structures[J]. Journal of Applied Physics, 104, 20(2008).
[22] Kumagai N, Watanabe K, Nakata Y et al. Optical properties of p-type modulation-doped InAs quantum dot structures grown by molecular beam epitaxy[J]. Journal of Crystal Growth, 301–302, 805-808(2007).
[23] Li Q, Wang X, Zhang Z et al. Development of Modulation p-Doped 1310 nm InAs/GaAs Quantum Dot Laser Materials and Ultrashort Cavity Fabry-Perot and Distributed-Feedback Laser Diodes[J]. ACS PHOTONICS, 2017: acsphotonics, 5, 7b01355.
[24] Yue L, Gong Q, Cao C et al. High-performance InAs/GaAs quantum dot laser with dot layers grown at 425℃[J]. Chinese Optics Letters, 11, 39-42(2013).
[25] Fathpour S, Mi Z, Bhattacharya P et al. The role of Auger recombination in the temperature-dependent output characteristics (T0=∞)of p-doped 1.3 μm quantum dot lasers[J]. Applied Physics Letters, 85, 5164-5166(2004).
Get Citation
Copy Citation Text
An-Tian DU, Chun-Fang CAO, Shi-Xian HAN, Hai-Long WANG, Qian GONG. Effect of Be doping in active regions on the performance of 1.3 μm InAs quantum dot lasers[J]. Journal of Infrared and Millimeter Waves, 2023, 42(4): 450
Category: Research Articles
Received: Dec. 22, 2022
Accepted: --
Published Online: Aug. 1, 2023
The Author Email: Hai-Long WANG (hlwang@qfnu.edu.cn), Qian GONG (qgong@mail.sim.ac.cn)