Acta Optica Sinica, Volume. 38, Issue 4, 0410004(2018)

Image Super-Resolution Reconstruction Based on Hierarchical Clustering

Taiying Zeng and Fei Du*
Author Affiliations
  • College of Communication and Art Design, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    References(24)

    [1] Wang X W, Liu Y[J]. Survey of image super-resolution investigation Information Technology, 2009, 236-240.

    [2] Lu W Y, Wang J Z. Survey of super resolution processing method of remote sensing image[J]. Science of Surveying and Mapping, 41, 53-58, 69(2016).

    [3] Xi Z H, Zeng J Q, Li S. Super-resolution reconstruction of medical image based on dual-dictionary and sparse representation[J]. Computer Measurement & Control, 25, 197-200(2017).

    [4] Liao X X. Research on learning-based image super-resolution reconstruction algorithms[D]. Guangzhou: South China University of Technology(2013).

    [5] Tan Z, Xiangli B, Lü Q B et al. A sequence images super-resolution enhancement approach based on frequency-domain[J]. Acta Optica Sinica, 37, 0710001(2017).

    [6] Zheng X T, Yuan Y, Lu X Q. Single image super-resolution restoration algorithm from external example to internal self-similarity[J]. Acta Optica Sinica, 37, 0318006(2017).

    [7] Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution[J]. IEEE Computer Graphics and Applications, 22, 56-65(2002).

    [8] Yang J C, Wright J, Huang T et al. Image super-resolution as sparse representation of raw image patches[C]. IEEE Conference on Computer Vision and Pattern Recognition, 10139952(2008).

    [11] Xu X L. Research of image segmentation algorithm based on clustering analysis[D]. Harbin: Harbin Engineering University(2012).

    [12] Lu H Q, Gui C H. -06-23[P]. Liu J. Image retrieval method based on hierarchical clustering: CN200810240361.8.(2010).

    [13] Huang W Q, Xu R C[M]. In the theory of computation: Research background, foreground and algorithm for solving NP hard problems(2006).

    [15] Elad M, Yavneh I. A plurality of sparse representations is better than the sparsest one alone[J]. IEEE Transactions on Information Theory, 55, 4701-4714(2009).

    [17] Sun J, Xu Z B, Shum H Y. Image super-resolution using gradient profile prior[C]. IEEE Conference on Computer Vision and Pattern Recognition, 10139964(2008).

    [19] Zhang X D, Fan J L, Xu J et al. Image super-resolution algorithm via K-means clustering and support vector data description[J]. Journal of Image and Graphics, 21, 135-144(2016).

    [20] Yu T. Research on neighbor embedding base image super-resolution reconstruction[D]. Nanjing: Nanjing University of Posts and Telecommunications(2013).

    [21] Fang Q. Research for image super resolution reconstruction based on dictionary learning[D]. Hefei: Hefei University of Technology(2016).

    [22] Wang D F, Gao J Q, Li L[J]. Studies on data classification based on median PCA and weighted PCA Information Technology, 2014, 14-18.

    [24] Mairal J, Bach F, Ponce J et al. Non-local sparse models for image restoration[C]. IEEE 12 th International Conference on Computer Vision, 2272-2279(2010).

    Tools

    Get Citation

    Copy Citation Text

    Taiying Zeng, Fei Du. Image Super-Resolution Reconstruction Based on Hierarchical Clustering[J]. Acta Optica Sinica, 2018, 38(4): 0410004

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Image Processing

    Received: Jul. 17, 2017

    Accepted: --

    Published Online: Jul. 10, 2018

    The Author Email: Du Fei (tiny3104@163.com)

    DOI:10.3788/AOS201838.0410004

    Topics