Acta Optica Sinica, Volume. 38, Issue 4, 0410004(2018)
Image Super-Resolution Reconstruction Based on Hierarchical Clustering
Fig. 1. Flow chart of image super-resolution reconstruction based on hierarchical clustering
Fig. 3. Flow chart of hierarchical clustering of agglomerative nesting and divisive analysis
Fig. 6. Standard test images. (a) Parrots; (b) Bike; (c) Hat; (d) Lena; (e) Peppers; (f) Leaves
Fig. 7. Reconstruction images of Leaves using different algorithms. (a) Original image; (b) bicubic interpolation algorithm; (c) algorithm proposed by Yang et al.[8]; (d) algorithm proposed by Dong et al.[9]; (e) algorithm proposed by Peleg et al.[10]; (f) our algorithm
Fig. 8. Reconstruction images of Lena using different algorithms. (a) Original image; (b) bicubic interpolation algorithm; (c) algorithm proposed by Yang et al.[8]; (d) algorithm proposed by Dong et al.[9]; (e) algorithm proposed by Peleg et al.[10]; (f) our algorithm
Fig. 9. Local reconstruction images of Leaves and Lena using different algorithms. (a) Bicubic interpolation algorithm; (b) algorithm proposed by Yang et al.[8]; (c) algorithm proposed by Dong et al.[9]; (d) algorithm proposed by Peleg et al.[10]; (e) our algorithm
Fig. 10. (a) PSNR and (b) SSIM line diagrams of reconstruction images with different algorithms
|
Get Citation
Copy Citation Text
Taiying Zeng, Fei Du. Image Super-Resolution Reconstruction Based on Hierarchical Clustering[J]. Acta Optica Sinica, 2018, 38(4): 0410004
Category: Image Processing
Received: Jul. 17, 2017
Accepted: --
Published Online: Jul. 10, 2018
The Author Email: Du Fei (tiny3104@163.com)