Acta Optica Sinica, Volume. 42, Issue 11, 1134010(2022)
Research Progresses on Vacuum-Ultraviolet 193-nm Band Solid-State Lasers
[1] Zhang F F, Yang F, Zhang S J et al. A picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy[J]. Chinese Physics B, 22, 064212(2013).
[2] Vetter A, Kirner R, Opalevs D et al. Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source[J]. Optics Express, 26, 22218-22233(2018).
[3] Jacob J, Armstrong D, Smith A. Far-UV solid-state lasers for semiconductor processing[J]. Proceedings of SPIE, 7582, 75820U(2010).
[4] Tanaka S, Arakawa M, Fuchimukai A et al. Development of high coherence high power 193 nm laser[J]. Proceedings of SPIE, 9726, 972624(2016).
[5] Fujimoto J, Kobayashi M, Kakizaki K et al. 193 nm high power lasers for the wide bandgap material processing[J]. Proceedings of SPIE, 10097, 100970T(2017).
[6] Delmdahl R, Esser H G, Fechner B et al. Advances in 193 nm lasers for fiber Bragg grating manufacturing[J]. Journal of Laser Micro/Nanoengineering, 11, 400-403(2016).
[7] Zhou X J, He S L, Liu G D et al. New developments in laser-based photoemission spectroscopy and its scientific applications: a key issues review[J]. Reports on Progress in Physics. Physical Society, 81, 062101(2018).
[8] Chen C, Wu B, You G et al. High-efficiency and wide-band single-harmonic-generation properties of the new crystal β-BaB2O4. [C]∥International Quantum Electronics Conference 1984, June 18-21, 1994, Anaheim, California, United States. Washington, D.C.: OSA, MCC5(1994).
[9] Chen C T, Wu Y C, Jiang A D et al. New nonlinear-optical crystal: LiB3O5[J]. Journal of the Optical Society of America B, 6, 616-621(1989).
[10] Mori Y, Kuroda I, Nakajima S et al. New nonlinear optical crystal: cesium lithium borate[J]. Applied Physics Letters, 67, 1818-1820(1995).
[11] Chen C T, Wang Y B, Xia Y N et al. New development of nonlinear optical crystals for the ultraviolet region with molecular engineering approach[J]. Journal of Applied Physics, 77, 2268-2272(1995).
[13] Liu Q, Yan X P, Chen H L et al. New progress in high-power all-solid-state ultraviolet laser[J]. Chinese Journal of Lasers, 37, 2289-2298(2010).
[14] Wang X Y, Liu L J. KBe2BO3F2 crystal and all-solid-state deep ultraviolet laser[J]. Chinese Journal of Quantum Electronics, 38, 131-147(2021).
[15] Liu L J, Zhao L, Zhou X J et al. Recent progress in the development of KBe2BO3F2: a deep-UV nonlinear optical crystal[J]. Applied Physics B, 128, 17(2022).
[16] Hemmati H, Bergquist J C, Itano W M. Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity[J]. Optics Letters, 8, 73-75(1983).
[17] Watanabe M, Hayasaka K, Imajo H et al. Generation of continuous-wave coherent radiation tunable down to 190.8 nm in β-BaB2O4[J]. Applied Physics B, 53, 11-13(1991).
[18] Watanabe M, Hayasaka K, Imajo H et al. Continuous-wave sum-frequency generation near 194 nm with a collinear double enhancement cavity[J]. Optics Communications, 97, 225-227(1993).
[19] Berkeland D J, Cruz F C, Bergquist J C. Sum-frequency generation of continuous-wave light at 194 nm[J]. Applied Optics, 36, 4159-4162(1997).
[20] Masuda H, Kimura K, Eguchi N et al. All-solid-state, continuous-wave, 195 nm light generation in β-BaB2O4. [C]∥Advanced Solid-State Lasers, January 28, 2001, Seattle, Washington. Washington, D.C.: OSA, WA6(2001).
[21] Zou H X, Wu Y, Chen G Z et al. Generation of continuous-wave 194 nm laser for mercury ion optical frequency standard[J]. Chinese Physics Letters, 32, 054207(2015).
[22] Imai S, Inoue H, Nomura T et al. CW 198.5-nm light generation in CLBO. [C]∥Advanced Solid-State Photonics, February 2-5, 2003, San Antonio, Texas. Washington, D.C.: OSA, 380(2003).
[23] Asakawa Y, Sakuma J, Sekita H et al. High-power CW DUV coherent light source around 200 nm. [C]∥Advanced Solid-State Photonics, February 1-4, 2004, Santa Fe, New Mexico. Washington, D.C.: OSA, 187(2004).
[24] Caprara A, Butterworth S, Kil Y et al. 200-mW continuous-wave laser source at 198.5 nm for lithographic applications[J]. Proceedings of SPIE, 5377, 1876-1885(2004).
[25] Sakuma J, Okada Y, Sumiyoshi T et al. CW DUV light sources for inspection tools[J]. Proceedings of SPIE, 5992, 599243(2005).
[26] Sakuma J, Moriizumi K, Kusunose H. True CW 193.4-nm light generation based on frequency conversion of fiber amplifiers[J]. Optics Express, 19, 15020-15025(2011).
[27] Sakuma J, Kaneda Y, Oka N et al. Continuous-wave 193.4 nm laser with 120 mW output power[J]. Optics Letters, 40, 5590-5593(2015).
[28] Scholz M, Opalevs D, Leisching P et al. 1.3-mW tunable and narrow-band continuous-wave light source at 191 nm[J]. Optics Express, 20, 18659-18664(2012).
[29] Scholz M, Opalevs D, Leisching P et al. A bright continuous-wave laser source at 193 nm[J]. Applied Physics Letters, 103, 051114(2013).
[30] Opalevs D, Scholz M, Stuhler J et al. Semiconductor-based narrow-line and high-brilliance 193-nm laser system for industrial applications[J]. Proceedings of SPIE, 10511, 105112C(2018).
[31] Kato K. Tunable UV generation in KB5O8·4H2O to 1966 Å[J]. Applied Physics Letters, 30, 583-584(1977).
[32] Xie F L, Wu B C, Mao H W et al. Efficient generation of deep ultraviolet radiation using LiB3O5 crystal[J]. Chinese Physics Letters, 9, 240-242(1992).
[33] Ringling J, Kittelmann O, Noack F. Efficient generation of subpicosecond seed pulses at 193 nm for amplification in ArF gain modules by frequency mixing in nonlinear optical crystals[J]. Optics Letters, 17, 1794-1796(1992).
[34] Yan W B, Steckroat T F, Frost R A et al. An all-solid-state, deep-UV laser source at 193 nm[C]∥CLEO'97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 18-23, 1997, Baltimore, MD, USA., 485(1997).
[35] Kasamatsu T, Tsunekane M, Sekita H et al. 1 pm spectrally narrowed ArF excimer laser injection-locked by 4th harmonic seed source of 773.6 nm Ti: sapphire laser. [C]∥Advanced Solid State Lasers 1995, January 30, 1995, Memphis, Tennessee, United States. Washington, D.C.: OSA, LA8(1995).
[36] Hamilton C E, Doughty C B, Roper P M et al. All solid-state, single-frequency 193-nm laser system for deep-UV metrology[C]∥Conference Proceedings. LEOS'98.11th Annual Meeting. IEEE Lasers and Electro-Optics Society 1998 Annual Meeting (Cat. No.98CH36243), December 1-4, 1998, Orlando, FL, USA., 322-323(1998).
[37] Masuda H, Umezu N, Kimura K et al. High-repetition-rate, 192-197 nm pulse generation in β-BaB2O4 by intracavity sum-frequency-mixing of a Ti: sapphire laser with a frequency-quadrupled Nd∶YAG laser. [C]∥Advanced Solid State Lasers 1999, January 31-February 3, 1999, Boston, Massachusetts, United States. Washington, D.C.: OSA, MF4(1999).
[38] Sakuma J, Finch A, Ohsako Y et al. All-solid-state, 1-W, 5-kHz laser source below 200 nm. [C]∥Advanced Solid State Lasers 1999, January 31-February 3, 1999, Boston, Massachusetts. Washington, D.C.: OSA, PD1(2001).
[39] Kouta H, Kuwano Y. Attaining 186-nm light generation in cooled β-BaB2O4 crystal[J]. Optics Letters, 24, 1230-1232(1999).
[40] Sakuma J, Deki K, Finch A et al. All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals[J]. Applied Optics, 39, 5505-5511(2000).
[41] Ohtsuki T, Kitano H, Kawai H et al. 193-nm generation by eighth harmonics of Er3+-doped fiber amplifier[C]∥Conference on Lasers and Electro-Optics (CLEO 2000). Technical Digest. Postconference Edition. TOPS Vol.39 (IEEE Cat. No.00CH37088), May 7-12, 2000, San Francisco, CA, USA., 109-110(2000).
[42] Jacob J J, Merriam A J. Development of a 5-kHz solid state 193-nm actinic light source for photomask metrology and review[J]. Proceedings of SPIE, 5567, 1099-1106(2004).
[43] Merriam A J, Bethune D S, Hoffnagle J A et al. A solid-state 193-nm laser with high spatial coherence for sub-40-nm interferometric immersion lithography[J]. Proceedings of SPIE, 6520, 65202Z(2007).
[44] Urata Y, Shinozaki T, Wada Y et al. Deep UV light generation by a fiber/bulk hybrid amplifier at 199 nm[J]. Applied Optics, 48, 1668-1674(2009).
[45] Imai S, Matsuki K, Kikuiri N et al. Highly reliable 198-nm light source for semiconductor inspection based on dual fiber lasers[J]. Proceedings of SPIE, 7580, 75800H(2010).
[46] Kagebayashi Y, Deki K, Morimoto Y et al. Superior properties of cesium triborate CsB3O5 for 194 nm light generation with Nd∶Y3Al5O12 laser[J]. Japanese Journal of Applied Physics, 39, L1224-L1226(2000).
[47] Wu S, Wu Y C, Fu P Z et al. All solid-state 193 nm source with 5 mJ pulse energy[J]. Proceedings of SPIE, 6216, 228-231(2006).
[48] Umemura N, Ando M, Suzuki K et al. 200-mW-average power ultraviolet generation at 0.193 μm in K2Al2B2O7[J]. Applied Optics, 42, 2716-2719(2003).
[49] Chen C T, Kanai T, Wang X Y et al. High-average-power light source below 200 nm from a KBe2BO3F2 prism-coupled device[J]. Optics Letters, 33, 282-284(2008).
[50] Kanai T, Wang X Y, Adachi S et al. Watt-level tunable deep ultraviolet light source by a KBBF prism-coupled device[J]. Optics Express, 17, 8696-8703(2009).
[51] Zhang X, Wang Z M, Wang G L et al. Widely tunable and high-average-power fourth-harmonic generation of a Ti∶sapphire laser with a KBe2BO3F2 prism-coupled device[J]. Optics Letters, 34, 1342-1344(2009).
[52] Zhang X, Wang Z M, Luo S Y et al. Widely tunable fourth harmonic generation of a Ti∶sapphire laser based on RBBF crystal[J]. Applied Physics B, 102, 825-830(2011).
[53] Kurimura S, Harada M, Muramatsu K I et al. Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching[J]. Optical Materials Express, 1, 1367-1375(2011).
[54] Wang R, Teng H, Wang N et al. Tunable deep ultraviolet single-longitudinal-mode laser generated with Ba1-xB2-y-zO4SixAlyGaz crystal[J]. Optics Letters, 39, 2105-2108(2014).
[55] Deki K, Sakuma J, Ohsako Y et al. 200 mW 192 nm generation using CsLiB6O10 crystal. [C]∥Conference on Lasers and Electro-Optics 1998, May 3-8, 1998, San Francisco, California, United States. Washington, D.C.: OSA, CPD4(1998).
[56] Ohsako Y, Sakuma J, Finch A et al. Watt-level DUV generation by solid state laser for lithography[J]. Proceedings of SPIE, 3679, 497-503(1999).
[57] Ohtsuki T, Kitano H, Kawai H et al. Efficient 193 nm generation by eighth harmonics of Er 3+ doped fiber amplifier. [C]∥Conference on Lasers and Electro-Optics 2000, May 7-11, 2000, San Francisco, California, United States. Washington, D.C.: OSA, PD9(2000).
[58] Kawai H, Tokuhisa A, Doi M et al. UV light source using fiber amplifier and nonlinear wavelength conversion[C]∥Conference on Lasers and Electro-Optics, 2003. CLEO'03, June 6, 2003, Baltimore, MD, USA., 817-818(2003).
[59] Kaneda Y, Peyghambarian N, Miyazono K et al. All-solid-state sub-200-nm pulsed deep ultraviolet source[C]∥2008 Conference on Lasers and Electro-Optics, May 4-9, 2008. San Jose, CA, USA.(2008).
[60] Lin Y, Huo Y J, He S F. Deep ultraviolet solid-state laser system[J]. Chinese Journal of Lasers, 36, 1826-1830(2009).
[61] Qu C, Yoshimura M, Tsunoda J et al. Phase-matching properties at around 190 nm of various borate crystals[J]. Applied Physics Express, 5, 062601(2012).
[62] Koch P, Bartschke J. L’Huillierr J A. All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd∶YVO4 laser with excellent beam quality[J]. Optics Express, 22, 13648-13658(2014).
[63] Koch P, Bartschke J. L’Huillierr J A. Single-mode deep-UV light source at 191.7 nm by seventh-harmonic generation of a high-power, Q-switched, injection-locked 1342 nm Nd∶YVO4 laser[J]. Applied Optics, 55, 1871-1877(2016).
[64] Tsuboi M, Nakazato T, Onose T et al. Development of high-power, 6 kHz, single-mode Ti: sapphire laser at 904 nm for generating 193 nm light[J]. Japanese Journal of Applied Physics, 54, 042702(2015).
[65] Xuan H W, Zhao Z G, Igarashi H et al. 300-mW narrow-linewidth deep-ultraviolet light generation at 193 nm by frequency mixing between Yb-hybrid and Er-fiber lasers[J]. Optics Express, 23, 10564-10572(2015).
[66] Xuan H W, Qu C, Zhao Z G et al. 1 W solid-state 193 nm coherent light by sum-frequency generation[J]. Optics Express, 25, 29172-29179(2017).
[67] Zhao Z G, Qu C, Igarashi H et al. Watt-level 193 nm source generation based on compact collinear cascaded sum frequency mixing configuration[J]. Optics Express, 26, 19435-19444(2018).
[68] Igarashi H, Tamaru Y, Qu C et al. Generation of 10 W, 1 ns deep ultraviolet pulse at 193 nm. [C]∥The European Conference on Lasers and Electro-Optics 2019, June 23-27, 2019, Munich, Germany. Washington, D.C.: OSA, ca_4_4(2019).
[69] Kamba Y, Igarashi H, Onose T et al. High peak power DUV laser processing[J]. Proceedings of SPIE, 11273, 112730L(2020).
[70] Qu C, Tanaka Y, Igarashi H et al. OPA based compact 193 nm light source for hybrid ArF laser. [C]∥Laser Applications Conference 2020, October 13-16, 2020, Washington, D.C. United States. Washington, D.C.: OSA, JTh6A, 2(2020).
[71] Stuhler J, Scholz M, Sommer A[2022-02-09]. Deliverable D3.5 "VUV cw laser system"[2022-02-09]. https:∥ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5c0fa2259&appId=PPGMS..
[78] Rumi M, Perry J W. Two-photon absorption: an overview of measurements and principles[J]. Advances in Optics and Photonics, 2, 451-518(2010).
[79] Wu S, Blake G A, Sun S et al. Two-photon absorption inside beta-BBO crystal during UV nonlinear optical conversion[J]. Proceedings of SPIE, 3928, 221-227(2000).
[80] Kumar S C, Casals J C, Wei J X et al. High-power, high-repetition-rate performance characteristics of β-BaB2O4 for single-pass picosecond ultraviolet generation at 266 nm[J]. Optics Express, 23, 28091-28103(2015).
[81] Görling C, Leinhos U, Mann K. Self-trapped exciton luminescence and repetition rate dependence of two-photon absorption in CaF2 at 193 nm[J]. Optics Communications, 216, 369-378(2003).
[82] Nakazato T, Wang X Y, Chen C T et al. Two-photon absorption of KBe2BO3F2 and CsLiB6O10 at 193 nm[J]. Japanese Journal of Applied Physics, 56, 122601(2017).
[83] Divall M, Osvay K, Kurdi G et al. Two-photon-absorption of frequency converter crystals at 248 nm[J]. Applied Physics B, 81, 1123-1126(2005).
[84] Kamimura T, Nakamura R, Horibe H et al. Characterization of two-photon absorption related to the enhanced bulk damage resistance in CsLiB6O10 crystal[J]. Japanese Journal of Applied Physics, 44, L665-L667(2005).
[85] Kurdi G, Osvay K, Klebniczki J et al. Two-photon-absorption of BBO, CLBO, KDP and LTB crystals. [C]∥Advanced Solid-State Photonics, February 6-9, 2005, Vienna, Austria. Washington, D.C.: OSA, MF18(2005).
[86] Dubietis A, Tamošauskas G. Varanavi ius A, et al. Two-photon absorbing properties of ultraviolet phase-matchable crystals at 264 and 211 nm[J]. Applied Optics, 39, 2437-2440(2000).
[87] Kittelmann O, Ringling J. Intensity-dependent transmission properties of window materials at 193-nm irradiation[J]. Optics Letters, 19, 2053-2055(1994).
[88] Slattery S A, Nikogosyan D N. Two-photon absorption at 211 nm in fused silica, crystalline quartz and some alkali halides[J]. Optics Communications, 228, 127-131(2003).
[89] Hovis F E, Shepherd B A, Radcliffe C T et al. Optical damage at the part per million level: the role of trace contamination in laser-induced optical damage[J]. Proceedings of SPIE, 2114, 145-153(1994).
[90] Tighe A P, Pettazzi F, Alves J et al. Growth mechanisms for laser induced contamination on space optics in vacuum[J]. Proceedings of SPIE, 7132, 71321L(2008).
[91] Riede W, Schroeder H, Bataviciute G et al. Laser-induced contamination on space optics[J]. Proceedings of SPIE, 8190, 81901E(2011).
[92] Wagner P. Laser-induced contamination on high-reflective optics[D]. Darmstadt: University of Applied Sciences(2014).
[93] Kokkinos D, Schroeder H, Fleury-Frenette K et al. Laser optics in space failure risk due to laser induced contamination[J]. CEAS Space Journal, 9, 153-162(2017).
[94] Hovis F E, Shepherd B A, Radcliffe C T et al. Mechanisms of contamination-induced optical damage in lasers[J]. Proceedings of SPIE, 2428, 72-83(1995).
[95] Hippler M, Wagner P, Schroeder H et al. Laser-induced contamination of space borne laser systems: impact of organic contamination and mitigation by oxygen[J]. Proceedings of SPIE, 9952, 99520N(2016).
[96] Hubka Z, Novak J, Majerova I et al. Mitigation of laser-induced contamination in vacuum in high-repetition-rate high-peak-power laser systems[J]. Applied Optics, 60, 533-538(2021).
Get Citation
Copy Citation Text
Zhigang Zhao, Hongwen Xuan, Jingchong Wang, Zhenhua Cong, Xingyu Zhang, Yohei Kobayashi, Zhaojun Liu. Research Progresses on Vacuum-Ultraviolet 193-nm Band Solid-State Lasers[J]. Acta Optica Sinica, 2022, 42(11): 1134010
Category: X-Ray Optics
Received: Feb. 9, 2022
Accepted: Apr. 7, 2022
Published Online: Jun. 3, 2022
The Author Email: Xuan Hongwen (xuanhw@aircas.ac.cn), Liu Zhaojun (zhaojunliu@sdu.edu.cn)