Chinese Journal of Lasers, Volume. 48, Issue 2, 0202004(2021)
Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application
[4] Bhimanapati G R, Lin Z, Meunier V et al. Recent advances in two-dimensional materials beyond graphene[J]. ACS Nano, 9, 11509-11539(2015).
[5] Radisavljevic B, Radenovic A, Brivio J et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 6, 147-150(2011).
[7] Muehlethaler C, Considine C R, Menon V et al. Ultrahigh Raman enhancement on monolayer MoS2[J]. ACS Photonics, 3, 1164-1169(2016).
[10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 238, 37-38(1972).
[11] Chen X, Liu L, Huang F. Black titanium dioxide (TiO2) nanomaterials[J]. Chemical Society Reviews, 44, 1861-1885(2015).
[15] Ge M Z, Cao C Y, Huang J Y et al. A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications[J]. Journal of Materials Chemistry A, 4, 6772-6801(2016).
[17] Yang L, Wei J T, Ma Z et al. The fabrication of micro/nano structures by laser machining[J]. Nanomaterials, 9, 1789(2019).
[18] Hong S, Lee H, Yeo J et al. Digital selective laser methods for nanomaterials:from synthesis to processing[J]. Nano Today, 11, 547-564(2016).
[20] Zhou Z R, Dong P, Li P L et al[J]. Research progress on the preparation methods of silicon nanowiresNonferrous Metallurgical Equipment, 2020, 1-3.
[21] Han M, Liu S L, Zhang L Y et al. Synthesis of octopus-tentacle-like Cu nanowire-Ag nanocrystals heterostructures and their enhanced electrocatalytic performance for oxygen reduction reaction[J]. Acs Applied Materials & Interfaces, 4, 6654-6660(2012).
[23] Li B L. Study on the preparation of two- and zero-dimensional MoS2 nanomaterials and their applications in biosensors[D]. Chongqing: Southwest University(2015).
[24] Wang D Z, Pan Z, Wu Z Z et al. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts[J]. Journal of Power Sources, 264, 229-234(2014).
[25] Semaltianos N G. Nanoparticles by laser ablation[J]. Critical Reviews in Solid State and Materials Sciences, 35, 105-124(2010).
[26] Gopalakrishnan D, Damien D, Li B et al. Electrochemical synthesis of luminescent MoS2 quantum dots[J]. Chemical Communications (Cambridge, England), 51, 6293-6296(2015).
[27] Li W H, Shen Y L, Xiao X et al. Simple Te-thermal converting 2H to 1T@2H MoS2 homojunctions with enhanced supercapacitor performance[J]. ACS Applied Energy Materials, 2, 8337-8344(2019).
[28] Gan X R. Lee L Y S, Wong K Y, et al. 2H/1T phase transition of multilayer MoS2 by electrochemical incorporation of S vacancies[J]. ACS Applied Energy Materials, 1, 4754-4765(2018).
[29] Xu X L, Chen S L, Liu S et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation[J]. Journal of the American Chemical Society, 141, 2128-2134(2019).
[30] Rezaei S, Li J, Herman P R. Burst train generator of high energy femtosecond laser pulses for driving heat accumulation effect during micromachining[J]. Optics Letters, 40, 2064-2067(2015).
[31] Zhu J, Wang Z, Yu H et al. Argon plasma induced phase transition in monolayer MoS2[J]. Journal of the American Chemical Society, 139, 10216-10219(2017).
[32] Cho S, Kim S, Kim J H et al. Phase patterning for ohmic homojunction contact inMo Te2[J]. Science, 349, 625-628(2015).
[33] Li X, Jiang L, Wang C et al. Transient localized material properties changes by ultrafast laser-pulse manipulation of electron dynamics in micro/nano manufacturing[J]. MRS Proceedings, 1365, 3-8(2011).
[34] Le Harzic R, Huot N, Audouard E et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy[J]. Applied Physics Letters, 80, 3886-3888(2002).
[35] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses[J]. Journal of the Optical Society of America B, 14, 2716-2722(1997).
[36] Kautek W, Krüger J, Lenzner M et al. Laser ablation of dielectrics with pulse durations between 20fs and 3ps[J]. Applied Physics Letters, 69, 3146-3148(1996).
[37] Wang H N, Zhang C J, Rana F. Ultrafast dynamics of defect-assisted electron-hole recombination in monolayer MoS2[J]. Nano Letters, 15, 339-345(2015).
[38] Pogna E A A, Marsili M, de Fazio D et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2[J]. ACS Nano, 10, 1182-1188(2016).
[42] Li R Z, Peng R, Kihm K D et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes[J]. Energy & Environmental Science, 9, 1458-1467(2016).
[43] Zhao Y Y, Zhang Y L, Zheng M L et al. Three-dimensional Luneburg lens at optical frequencies[J]. Laser & Photonics Reviews, 10, 665-672(2016).
[44] Ma Y L, Jiang L, Hu J et al. Multifunctional 3D micro-nanostructures fabricated through temporally shaped femtosecond laser processing for preventing thrombosis and bacterial infection[J]. ACS Applied Materials & Interfaces, 12, 17155-17166(2020).
[45] Zuo P, Jiang L, Li X et al. Maskless micro/nanopatterning and bipolar electrical rectification of MoS2 flakes through femtosecond laser direct writing[J]. ACS Applied Materials & Interfaces, 11, 39334-39341(2019).
[46] Zuo P, Jiang L, Li X et al. Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS2 defect sites for photoluminescence control and SERS enhancement[J]. Nanoscale, 11, 485-494(2019).
[47] Li B, Jiang L, Li X et al. Controllable synthesis of nanosized amorphous MoSx using temporally shaped femtosecond laser for highly efficient electrochemical hydrogen production[J]. Advanced Functional Materials, 29, 1806229(2019).
[48] Chen Y, Lai Z C, Zhang X et al. Phase engineering of nanomaterials[J]. Nature Reviews Chemistry, 4, 243-256(2020).
[50] Liu X Q, Chen Q D, Guan K M et al. Dry-etching-assisted femtosecond laser machining[J]. Laser & Photonics Reviews, 11, 1600115(2017).
[52] Sakka T, Saito K, Ogata Y H. Confinement effect of laser ablation plume in liquids probed by self-absorption of C2 Swan band emission[J]. Journal of Applied Physics, 97, 014902(2005).
[54] Asahi T, Mafuné F, Rehbock C et al. Strategies to harvest the unique properties of laser-generated nanomaterials in biomedical and energy applications[J]. Applied Surface Science, 348, 1-3(2015).
[55] Eliezer S, Eliaz N, Grossman E et al. Synthesis of nanoparticles with femtosecond laser pulses[J]. Physical Review B, 69, 144119(2004).
[56] Wang H Q, Pyatenko A, Kawaguchi K et al. Selective pulsed heating for the synthesis of semiconductor and metal submicrometer spheres[J]. Angewandte Chemie International Edition, 49, 6361-6364(2010).
[57] Jiang L, Wang A D, Li B et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication:modeling, method, measurement and application[J]. Light: Science & Applications, 7, 17134(2018).
[58] Zhang D S, Liu J, Li P F et al. Recent advances in surfactant-free, surface-charged, and defect-rich catalysts developed by laser ablation and processing in liquids[J]. ChemNanoMat, 3, 512-533(2017).
[59] Sylvestre J P, Kabashin A V, Sacher E et al. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution[J]. Applied Physics A, 80, 753-758(2005).
[61] Li B, Jiang L, Li X et al. Preparation of monolayer MoS2 quantum dots using temporally shaped femtosecond laser ablation of bulk MoS2 targets in water[J]. Scientific Reports, 7, 11182(2017).
[62] Levis R J. Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses[J]. Science, 292, 709-713(2001).
[63] Nakamura T, Takasaki K, Ito A et al. Fabrication of platinum particles by intense, femtosecond laser pulse irradiation of aqueous solution[J]. Applied Surface Science, 255, 9630-9633(2009).
[64] Herbani Y, Nakamura T, Sato S. Synthesis of near-monodispersed Au-Ag nanoalloys by high intensity laser irradiation of metal ions in hexane[J]. The Journal of Physical Chemistry C, 115, 21592-21598(2011).
[66] Zhao Y Y, Zheng M L, Dong X Z et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser[J]. Applied Physics Letters, 108, 221104(2016).
[67] Wang A D, Jiang L, Li X W et al. Mask-free patterning of high-conductivity metal nanowires in open air by spatially modulated femtosecond laser pulses[J]. Advanced Materials, 27, 6238-6243(2015).
[68] Xiong W, Liu Y, Jiang L J et al. Laser-directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication[J]. Advanced Materials, 28, 2002-2009(2016).
[70] Shi X, Li X, Jiang L et al. Femtosecond laser rapid fabrication of large-area rose-like micropatterns on freestanding flexible graphene films[J]. Scientific Reports, 5, 17557(2015).
[71] Liu Y Q, Mao J W, Chen Z D et al. Three-dimensional micropatterning of graphene by femtosecond laser direct writing technology[J]. Optics Letters, 45, 113-116(2019).
[72] Zuo P, Jiang L, Li X et al. Shape-controllable gold nanoparticle-MoS2 hybrids prepared by tuning edge-active sites and surface structures of MoS2 via temporally shaped femtosecond pulses[J]. ACS Applied Materials & Interfaces, 9, 7447-7455(2017).
[73] Li J, Yang X D, Liu Y et al. General synthesis of two-dimensional van der Waals heterostructure arrays[J]. Nature, 579, 368-374(2020).
[74] Ahmmed K, Grambow C, Kietzig A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 5, 1219-1253(2014).
[75] Ran P, Jiang L, Li X et al. Redox shuttle enhances nonthermal femtosecond two-photon self-doping of rGO-TiO2-x photocatalysts under visible light[J]. Journal of Materials Chemistry A, 6, 16430-16438(2018).
[76] Cai M, Fan P, Long J et al. Large-scale tunable 3D self-supporting WO3 micro-nano architectures as direct photoanodes for efficient photoelectrochemical water splitting[J]. ACS Applied Materials & Interfaces, 9, 17856-17864(2017).
[80] Ran P, Jiang L, Li X et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 15, 1804899(2019).
[82] Wu H, Yang R, Song B et al. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water[J]. ACS Nano, 5, 1276-1281(2011).
[84] Xu C Y, Jiang L, Li X et al. Miniaturized high-performance metallic 1T-phase MoS2 micro-supercapacitors fabricated by temporally shaped femtosecond pulses[J]. Nano Energy, 67, 104260(2020).
[85] In J B, Hsia B, Yoo J H et al. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide[J]. Carbon, 83, 144-151(2015).
[86] Ding S Y, Yi J, Li J F et al. Erratum: nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 16036(2016).
Get Citation
Copy Citation Text
Mengyao Tian, Pei Zuo, Misheng Liang, Chenyang Xu, Yongjiu Yuan, Xueqiang Zhang, Jianfeng Yan, Xin Li. Femtosecond Laser Processing of Low-Dimensional Nanomaterials and Its Application[J]. Chinese Journal of Lasers, 2021, 48(2): 0202004
Category: laser manufacturing
Received: Sep. 2, 2020
Accepted: Nov. 12, 2020
Published Online: Jan. 7, 2021
The Author Email: Li Xin (lixin02@bit.edu.cn)