Chinese Optics, Volume. 15, Issue 1, 1(2022)
Research progress of lithium niobate thin-film modulators
[1] WOOTEN E L, KISSA K M, YI-YAN A, et al. A review of lithium niobate modulators for fiber-optic communications systems[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 69-82(2000).
[2] TENG M, HONARDOOST A, ALAHMADI Y, et al. Miniaturized silicon photonics devices for integrated optical signal processors[J]. Journal of Lightwave Technology, 38, 6-17(2020).
[3] SUN CH, WADE M T, LEE Y, et al. Single-chip microprocessor that communicates directly using light[J]. Nature, 528, 534-538(2015).
[4] OGISO Y, OZAKI J, UEDA Y, et al. Over 67 GHz bandwidth and 1.5 V
[5] KOEBER S, PALMER R, LAUERMANN M, et al. Femtojoule electro-optic modulation using a silicon-organic hybrid device[J]. Light:Science & Applications, 4, e255(2015).
[6] HAFFNER C, CHELLADURAI D, FEDORYSHYN Y, et al. Low-loss plasmon-assisted electro-optic modulator[J]. Nature, 556, 483-486(2018).
[7] [7] GUTIERREZ A M, GALAN J V, HERRERA J, et al. . High linear ringassisted MZI electrooptic silicon modulats suitable f radiooverfiber applications[C]. Proceedings of the 9th International Conference on Group IV Photonics (GFP), IEEE, 2012: 5759.
[8] CHEN B Y, YU Y J, WU CH T, . High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J]. Chinese Optics, 14, 361-367(2021).
[9] [9] Srico. Lithium niobate modulat[EBOL]. [20210831].https:www.srico.comproducts.
[10] [10] Optilab. Lithium niobate modulat[EBOL]. [20210831].https:www.optilab.comopticalmodulat.
[11] [11] EOspace. Lithium niobate modulat[EBOL]. [20210831].https:www.eospace.comproductsummarymodulat.
[12] WEIGEL P O, ZHAO J, FANG K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth[J]. Optics Express, 26, 23728-23739(2018).
[13] WANG X X, WEIGEL P O, ZHAO J, et al. Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate[J]. APL Photonics, 4, 096101(2019).
[14] LI M X, LIANG H X, LUO R, et al. High‐
[15] LI M X, LIANG H X, LUO R, et al. Photon-level tuning of photonic nanocavities[J]. Optica, 6, 860-863(2019).
[16] QIAO Q F, XIA J, LEE C, et al. Applications of photonic crystal nanobeam cavities for sensing[J]. Micromachines, 9, 541(2018).
[17] LI T Q, MAO X J, LEI J, . Analysis and comparison of solid-state lasers and fiber lasers on the coupling of rod-type photonic crystal fiber[J]. Chinese Optics, 11, 958-973(2018).
[18] SHI G H. Improved method for semiconductor laser coupling[J]. Chinese Optics, 6, 343-352(2013).
[19] SON G, HAN S, PARK J, et al. High-efficiency broadband light coupling between optical fibers and photonic integrated circuits[J]. Nanophotonics, 7, 1845-1864(2018).
[20] HONARDOOST A, GONZALEZ G F C, KHAN S, et al. Cascaded integration of optical waveguides with third-order nonlinearity with lithium niobate waveguides on silicon substrates[J]. IEEE Photonics Journal, 10, 4500909(2018).
[21] LI Y, LAN T, LI J, et al. High-efficiency edge-coupling based on lithium niobate on an insulator wire waveguide[J]. Applied Optics, 59, 6694-6701(2020).
[22] KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Nanostructuring of LNOI for efficient edge coupling[J]. Optics Express, 27, 16578-16585(2019).
[23] LIU D N, FENG L SH, JIA Y Z, et al. Heterogeneous integration of LN and Si3N4 waveguides using an optical interlayer coupler[J]. Optics Communications, 436, 1-6(2019).
[24] HE L Y, ZHANG M, SHAMS-ANSARI A, et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 44, 2314-2317(2019).
[25] YING P, TAN H Y, ZHANG J W, et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter[J]. Optics Letters, 46, 1478-1481(2021).
[26] KRASNOKUTSKA I, CHAPMAN R J, TAMBASCO J L J, et al. High coupling efficiency grating couplers on lithium niobate on insulator[J]. Optics Express, 27, 17681-17685(2019).
[27] MAHMOUD M, CAI L T, BOTTENFIELD C, et al. Lithium niobate electro-optic racetrack modulator etched in Y-Cut LNOI platform[J]. IEEE Photonics Journal, 10, 6600410(2018).
[28] YAO N, ZHOU J X, GAO R H, et al. Efficient light coupling between an ultra-low loss lithium niobate waveguide and an adiabatically tapered single mode optical fiber[J]. Optics Express, 28, 12416-12423(2020).
[29] WANG M K, LI J H, CHEN K X, et al. Thin-film lithium niobate electro-optic modulator on a D-shaped fiber[J]. Optics Express, 28, 21464-21473(2020).
[30] ALFERNESS R C. Waveguide electrooptic modulators[J]. IEEE Transactions on Microwave Theory and Techniques, 30, 1121-1137(1982).
[31] BINH L N. Tilted traveling wave electrodes and impacts on high-speed operation of integrated electro-optic modulators: modeling and experimental demonstration[J]. Optical Engineering, 48, 097005(2009).
[32] YANG D C, CHEN Y K, XIANG M H, et al. Traveling wave electrode design for a LiNbO3 integrated optical switch[J]. Proceedings of SPIE, 11334, 113341B(2019).
[33] GEE A, JAAFAR A H, KEMP N T. Nanoscale junctions for single molecule electronics fabricated using bilayer nanoimprint lithography combined with feedback controlled electromigration[J]. Nanotechnology, 31, 155203(2020).
[34] [34] AIDIL S A, NUZAIHAN M N M, ARSHAD M K, et al. . Fabrication acterization of polySi nanowire with Thin Film of NiAu contact pad using conventional photolithography[C]. Proceedings of 2019 IEEE International Conference on Senss Nanotechnology, IEEE, 2019: 2932.
[35] KUBOTA K, NODA J, MIKAMI O. Traveling wave optical modulator using a directional coupler LiNbO3waveguide[J]. IEEE Journal of Quantum Electronics, 16, 754-760(1980).
[36] [36] LEVY M, RADOJEVIC A M. Singlecrystal lithium niobate films by crystal ion slicing[M]. ALEXE M, GSELE U. Wafer Bonding: Applications Technology. Berlin, Heidelberg: Springer, 2004: 417450.
[37] RAO A, FATHPOUR S. Compact lithium niobate electrooptic modulators[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 3400114(2018).
[38] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[J]. Proceedings of SPIE, 7604, 76040R(2010).
[39] POBERAJ G, KOECHLIN M, SULSER F, et al. Ion-sliced lithium niobate thin films for active photonic devices[J]. Optical Materials, 31, 1054-1058(2009).
[40] TAKIGAWA R, ASANO T. Thin-film lithium niobate-on-insulator waveguides fabricated on silicon wafer by room-temperature bonding method with silicon nanoadhesive layer[J]. Optics Express, 26, 24413-24421(2018).
[41] HOWLADER M M R, SUGA T, KIM M J. Room temperature bonding of silicon and lithium niobate[J]. Applied Physics Letters, 89, 031914(2006).
[42] LEE Y S, KIM G D, KIM W J, et al. Hybrid Si-LiNbO3 microring electro-optically tunable resonators for active photonic devices[J]. Optics Letters, 36, 1119-1121(2011).
[43] ARIZMENDI L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi (A), 201, 253-283(2004).
[44] YU J, ZHANG CH X, LI CH SH, et al. Influence of polarization-dependent crosstalk on scale factor in the in-line Sagnac interferometer current sensor[J]. Optical Engineering, 52, 117101(2013).
[45] PAZ‐PUJALT G R, TUSCHEL D D, BRAUNSTEIN G, et al. Characterization of proton exchange lithium niobate waveguides[J]. Journal of Applied Physics, 76, 3981-3987(1994).
[46] PALIWAL A, SHARMA A, GUO R Y, et al. Electro-optic (EO) effect in proton-exchanged lithium niobate: towards EO modulator[J]. Applied Physics B, 125, 115(2019).
[47] HAN H P, XIANG B X, LIN T, et al. Design and optimization of proton exchanged integrated electro-optic modulators in X-Cut lithium niobate thin film[J]. Crystals, 9, 549(2019).
[48] ULLIAC G, GUICHARDAZ B, RAUCH J Y, et al. Ultra-smooth LiNbO3 micro and nano structures for photonic applications[J]. Microelectronic Engineering, 88, 2417-2419(2011).
[49] WANG CH, ZHANG M, STERN B, et al. Nanophotonic lithium niobate electro-optic modulators[J]. Optics Express, 26, 1547-1555(2018).
[50] KRASNOKUTSKA I, TAMBASCO J L J, LI X J, et al. Ultra-low loss photonic circuits in lithium niobate on insulator[J]. Optics Express, 26, 897-904(2018).
[51] WANG J, BO F, WAN SH, et al. High-
[52] WANG M, WU R B, LIN J T, et al. Chemo‐mechanical polish lithography: a pathway to low loss large‐scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 1, e9(2019).
[53] ZHANG J H, FANG ZH W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials (Basel), 9, 1218(2019).
[54] HU H, RICKEN R, SOHLER W, et al. Lithium niobate ridge waveguides fabricated by wet etching[J]. IEEE Photonics Technology Letters, 19, 417-419(2007).
[55] ULLIAC G, CALERO V, NDAO A, et al. Argon plasma inductively coupled plasma reactive ion etching study for smooth sidewall thin film lithium niobate waveguide application[J]. Optical Materials, 53, 1-5(2016).
[56] ZHANG K, YUE Y B, LI T, . Application of ICP etching in fabrication of polymer optical waveguide[J]. Chinese Optics, 5, 64-70(2012).
[57] WANG CH, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).
[58] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials (Basel), 8, 910(2018).
[59] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-
[60] RÜTER C E, SUNTSOV S, KIP D, et al. Characterization of diced ridge waveguides in pure and Er-doped lithium-niobate-on-insulator (LNOI) substrates[J]. Proceedings of SPIE, 8982, 89821G(2014).
[61] VOLK M F, SUNTSOV S, RÜTER C E, et al. Low loss ridge waveguides in lithium niobate thin films by optical grade diamond blade dicing[J]. Optics Express, 24, 1386-1391(2016).
[62] AHMED A N R, NELAN S, SHI SH Y, et al. Subvolt electro-optical modulator on thin-film lithium niobate and silicon nitride hybrid platform[J]. Optics Letters, 45, 1112-1115(2020).
[63] SOLER M, SCHOLTZ A, ZETO R, et al. Engineering photonics solutions for COVID-19[J]. APL Photonics, 5, 090901(2020).
[64] HONARDOOST A, JUNEGHANI F A, SAFIAN R, et al. Towards subterahertz bandwidth ultracompact lithium niobate electrooptic modulators[J]. Optics Express, 27, 6495-6501(2019).
[65] AHMED A N R, SHI SH Y, MERCANTE A J, et al. High-performance racetrack resonator in silicon nitride - thin film lithium niobate hybrid platform[J]. Optics Express, 27, 30741-30751(2019).
[66] JIN T N, ZHOU J CH, LIN P T. Mid-infrared electro-optical modulation using monolithically integrated titanium dioxide on lithium niobate optical waveguides[J]. Scientific Reports, 9, 15130(2019).
[67] RABIEI P, MA J CH, KHAN S, et al. Heterogeneous lithium niobate photonics on silicon substrates[J]. Optics Express, 21, 25573-25581(2013).
[68] RAO A, PATIL A, CHILES J, et al. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon[J]. Optics Express, 23, 22746-22752(2015).
[69] LI SH, CAI L T, WANG Y W, et al. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe[J]. Optics Express, 23, 24212-24219(2015).
[70] LIU Y, LI H, LIU J, et al. Low
[71] AHMED A N R, SHI SH Y, MERCANTE A, et al. High-efficiency lithium niobate modulator for
[72] XU M Y, HE M B, ZHANG H G, et al. High-performance coherent optical modulators based on thin-film lithium niobate platform[J]. Nature Communications, 11, 3911(2020).
[73] HAN H P, XIANG B X. Integrated electro-optic modulators in
[74] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate[J]. Optica, 6, 380-384(2019).
[75] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond[J]. Nature Photonics, 13, 359-364(2019).
[76] XU M Y, CHEN W J, HE M B, et al. Michelson interferometer modulator based on hybrid silicon and lithium niobate platform[J]. APL Photonics, 4, 100802(2019).
[77] JIAN J, XU M Y, LIU L, et al. High modulation efficiency lithium niobate Michelson interferometer modulator[J]. Optics Express, 27, 18731-18739(2019).
[78] CAI L T, KANG Y, HU H. Electric-optical property of the proton exchanged phase modulator in single-crystal lithium niobate thin film[J]. Optics Express, 24, 4640-4647(2016).
[79] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 11, 4123(2020).
[80] BAHADORI M, YANG Y S, HASSANIEN A E, et al. Ultra-efficient and fully isotropic monolithic microring modulators in a thin-film lithium niobate photonics platform[J]. Optics Express, 28, 29644-29661(2020).
[81] KRASNOKUTSKA I, TAMBASCO J L J, PERUZZO A. Tunable large free spectral range microring resonators in lithium niobate on insulator[J]. Scientific Reports, 9, 11086(2019).
[82] JIN SH L, XU L T, ZHANG H H, et al. LiNbO3 Thin-film modulators using silicon nitride surface ridge waveguides[J]. IEEE Photonics Technology Letters, 28, 736-739(2016).
[83] REN T H, ZHANG M, WANG CH, et al. An integrated low-voltage broadband lithium niobate phase modulator[J]. IEEE Photonics Technology Letters, 31, 889-892(2019).
Get Citation
Copy Citation Text
Hai-feng LIU, Hong-jie GUO, Man-qing TAN, Zhi-yong LI. Research progress of lithium niobate thin-film modulators[J]. Chinese Optics, 2022, 15(1): 1
Category: Review
Received: May. 24, 2021
Accepted: --
Published Online: Jul. 27, 2022
The Author Email: