Journal of the Chinese Ceramic Society, Volume. 53, Issue 8, 2239(2025)
Molding and Performance of Highly Dense Indium Tin Oxide Tubular Targets
[1] [1] JANARTHANAN B, THIRUNAVUKKARASU C, MARUTHAMUTHU S, et al. Basic deposition methods of thin films[J]. J Mol Struct, 2021, 1241: 130606.
[2] [2] DATTOLI E N, LU W. ITO nanowires and nanoparticles for transparent films[J]. MRS Bull, 2011, 36(10): 782-788.
[3] [3] MA Z Z, LI Z R, LIU K, et al. Indium-tin-oxide for high-performance electro-optic modulation[J]. Nanophotonics, 4(1): 198-213.
[4] [4] MEI F S, YUAN T C, LI R D, et al. Micro-structure of ITO ceramics sintered at different temperatures and its effect on the properties of deposited ITO films[J]. J Eur Ceram Soc, 2018, 38(2): 521-533.
[5] [5] CRUZ L R, LEGNANI C, MATOSO I G, et al. Influence of pressure and annealing on the microstructural and electro-optical properties of RF magnetron sputtered ITO thin films[J]. Mater Res Bull, 2004, 39(7-8): 993-1003.
[6] [6] HUANG M, ABERLE A G, MUELLER T. Effects of indium tin oxide on the performance of heterojunction silicon wafer solar cells[J]. Jpn J Appl Phys, 2017, 56(8S2): 08MB17.
[7] [7] JIANG H Y, YANG X L, WEN Z X, et al. Considerably improved photovoltaic performances of ITO/Si heterojunction solar cells by incorporating hydrogen into near-interface region[J]. IEEE J Photovolt, 2022, 12(5): 1102-1108.
[9] [9] DU G L, BAI Y H, HUANG J, et al. Surface passivation of ITO on heterojunction solar cells with enhanced cell performance and module reliability[J]. ECS J Solid State Sci Technol, 2021, 10(3): 035008.
[10] [10] VALENCIA H Y, MORENO L C, ARDILA A M. Structural, electrical and optical analysis of ITO thin films prepared by Sol-gel[J]. Microelectron J, 2008, 39(11): 1356-1357.
[11] [11] CHEN X H, FAN Q H, CHEN H Y, et al. Symmetrical magnet magnetron sputtering method for improving target utilization[J]. 1994, 65(8): 2693-2695.
[14] [14] ZHANG W, ZHU G S, ZHI L, et al. Structural, electrical and optical properties of indium tin oxide thin films prepared by RF sputtering using different density ceramic targets[J]. Vacuum, 2012, 86(8): 1045-1047.
[15] [15] FANG Z J, TAN Z D, JIANG F, et al. Preparation of extraordinary high-density indium-tin oxide target on the basis of pressure-less sintering method[J]. Ceram Int, 2024, 50(1): 2271-2281.
[16] [16] ZHU G S, YANG Z P, ZHI L, et al. Preparation and sintering behavior of the tin-doped indium oxide nanopowders[J]. J Am Ceram Soc, 2010, 93(9): 2511-2514.
[17] [17] ZHAI X Y, CHEN Y J, MA Y Q, et al. A new strategy of binary-size particles model for fabricating fine grain, high density and low resistivity ITO target[J]. Ceram Int, 2020, 46(9): 13660-13668.
[18] [18] Sunde L O T, Einarsrud M, Grande T. Solid state sintering of nano-crystalline indium tin oxide[J].J Eur Ceram Soc,2013,33(3):565-574.
[21] [21] XIA Y N, XIONG Y J, LIM B, et al. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics?[J]. Angew Chem Int Ed, 2009, 48(1): 60-103.
[22] [22] ZHAO X, DU Y T, ZHANG C J, et al. Enhanced visible photocatalytic activity of TiO2 hollow boxes modified by methionine for RhB degradation and NO oxidation[J]. Chin J Catal, 2018, 39(4): 736-746.
[23] [23] SHEREMET V I, AKIMOV G Y, ANDREEV I V, et al. Cold isostatic pressing effect on the WC-15 wt.% co hard alloy strength[J]. Strength Mater, 2024, 56(3): 551-558.
[24] [24] PRILIPKO S Y, VOLKOVA G K, LOLADZE L V, et al. Sintering of amorphous Al(OH)3 using cold isostatic pressing[J]. Glass Ceram, 2024, 80(11): 521-523.
[25] [25] RAHIMI MEHR F, KAMRANI S, FLECK C, et al. Optimal performance of Mg-SiC nanocomposite: Unraveling the influence of reinforcement particle size on compaction and densification in materials processedviamechanical milling and cold iso-static pressing[J]. Appl Sci, 2023, 13(15): 8909.
[26] [26] OVALLE-ENCINIA O, LIN J Y S. Synthesis and characteristics of porous ceramic tubes: A comparison of centrifugal casting and cold isostatic pressing methods[J]. J Mater Sci, 2023, 58(25): 10261-10273.
[27] [27] KOK C, JAHMUNAH V, OH S L, et al. Automated prediction of sepsis using temporal convolutional network[J]. Comput Biol Med, 2020, 127: 103957.
[28] [28] HUANG J W, YUAN T C, MEI F S, et al. Effects of cerium oxide doping on the microstructure and properties of ITO targets and the photoelectric properties of the films[J]. J Mater Sci Mater Electron, 2019, 30(16): 15469-15481.
[29] [29] XU J, YANG L, WANG H, et al. Sintering behavior and refining grains of high density tin doped indium oxide targets with low tin oxide content[J].J Mater Sci Mate Electro,2016,27(4):3298-3304.
[30] [30] OMATA T, KITA M, OKADA H, et al. Characterization of indium-tin oxide sputtering targets showing various densities of nodule formation[J]. Thin Solid Films, 2006, 503(1/2): 22-28.
Get Citation
Copy Citation Text
WEN Lang, ZHAO Tianhao, XU Huarui, LONG Shenfeng, WU Fangzhou, XU Jiwen, ZHU Guisheng, HUANG Shicheng. Molding and Performance of Highly Dense Indium Tin Oxide Tubular Targets[J]. Journal of the Chinese Ceramic Society, 2025, 53(8): 2239
Category:
Received: Jan. 8, 2025
Accepted: Sep. 5, 2025
Published Online: Sep. 5, 2025
The Author Email: ZHU Guisheng (Zhuguisheng@guet.edu.cn)